

MAJALAH METALURGI (2015) 2: 89-94

Available online at www.ejournalmaterialmetalurgi.com

PREPARASI, SINTESIS Dan KARAKTERISASI MATERIAL CaMnO3

M. Yunan Hasbi^{*}, Sigit Dwi Yudanto

Pusat Penelitian Metalurgi dan Material - LIPI Gedung 470, Kawasan Puspiptek, Tangerang Selatan E-Mail: *muha135@lipi.go.id

Masuk Tanggal : 18-06-2015, revisi tanggal : 06-08-2015, diterima untuk diterbitkan tanggal 18-08-2015

Intisari

CaMnO₃ merupakan senyawa oksida logam dengan potensi aplikasi yang cukup luas, salah satunya yaitu termoelektrik. Sintesis CaMnO₃ menggunakan bahan baku gugus karbonat berhasil dilakukan melalui metode reaksi padatan. Sintesis diawali dengan pencampuran kedua bahan baku secara stoikiometri dan dilanjutkan dengan penggerusan, kalsinasi, peletisasi dan penyinteran pada variasi suhu 1100 °C, 1200 °C dan 1250 °C. Pengamatan XRD menunjukkan kecenderungan pola difraksi yang sama pada tiap temperatur serta menunjukkan terbentuknya fasa tunggal CaMnO₃. Nilai parameter kisi kristal CaMnO₃ hasil penghalusan menggunakan metode *Rietvield* dengan sistem kristal *orthorombic* dan *space group* Pnma adalah a = ~5,26 Å; b = ~7,44 Å; dan c = ~5,27 Å. Struktur mikro fasa CaMnO₃ menunjukkan bahwa semakin tinggi suhu, ukuran butir akan semakin kecil dan jarak antar butir semakin rapat.

Kata Kunci: CaMnO₃, Sintesis, Parameter kisi, Rietvield

Abstract

 $CaMnO_3$ is metal oxide compound with wide potential applications i.e thermoelectric. Synthesis of $CaMnO_3$ using carbonat groups material has been succesfully carried out through solid state reaction method. It is started by mixing of both $CaCO_3$ and $MnCo_3$ raw materials at a stoichimometri composition and followed by grinding, calcinating, pelletizing and sintering at various temperatures of 1100 °C, 1200 °C and 1250 °C. X-Ray diffraction results for all specimens show similar pattern at each temperature condition, namely the formation of single phase $CaMnO_3$. Crystal lattice from refinement with Rietviled method that has been identified in orthorombic crystal system and Pnma space group was a = -5,26 Å; b = -7,44 Å; dan c = -5,27 Å. Microstructure of $CaMnO_3$ phase shows that increasing temperature will increase grain density and reduce grain space.

Keywords: CaMnO₃, Synthesis, Lattice parameter, Rietvield

1. PENDAHULUAN

CaMnO₃ merupakan senyawa oksida dengan potensi aplikasi yang cukup luas. Salah satu diterapkan aplikasi yang dapat dengan menggunakan CaMnO₃ yaitu termoelektrik^[1,2,3,4,5] Dalam aplikasinya, termoelektrik menggunakan pasangan material oksida tipe-p dan tipe-n yang bertindak sebagai katoda dan anoda dalam menghasilkan listrik. Material oksida tipe-p dan tipe-n yang saat ini banyak dijadikan sebagai bahan penelitian yaitu p-Ca₃Co₄O₉ dan n-CaMnO₃. Dasar penggunaan material oksida n-CaMnO₃ dalam penelitian ini selain mudah disintesis juga mudah untuk diperoleh. Bahkan salah satu material penyusunnya, CaCO₃ (kalsium karbonat) bisa

diperoleh dari alam berupa cangkang kerang dan lain-lain^[5].

Dengan perkembangan teknologi yang selalu berubah, perlu dilakukan pengkajian secara berkelanjutan mengenai senyawa CaMnO₃ baik dari segi produksi dan pemakaian bahan baku, serta identifikasi karakteristiknya. Beberapa penelitian telah berhasil mensintesis CaMnO₃ menggunakan metode sintesis seperti metode fluks^[6,7] dan metode reaksi padatan^[8,9]. Penelitian ini menggunakan metode reaksi padatan dengan bahan baku gugus karbonat CaCO₃ dan MnCO₃. Metode reaksi padatan dipilih karena tidak menghasilkan limbah (green technology) dan mudah dalam kontrol reaksi^[10].

Dalam beberapa penelitian^[9,11,12], sebelum melakukan sintesis, bahan baku awal dilakukan dengan karakterisasi differential thermo analysis/thermo gravimetry analysis (DTA-TGA) untuk mengetahui perilaku bahan baku terhadap perubahan panas. Berdasarkan diagram fasa sistem CaO-Mn₂O₃, suhu pembentukan fasa CaMnO₃ teriadi pada rentang 1100-1300 °C. dikarakterisasi hasil Kemudian sintesis menggunakan difraktometer sinar-X untuk mengkonfirmasi senyawa yang terbentuk. Dan terakhir dilakukan pengamatan struktur butir sampel menggunakan citra mikroskop elektron untuk menunjukkan kondisi sampel secara visual. Berdasarkan langkah-langkah percobaan pembuatan material CaMnO₃ di atas, maka diharapkan material CaMnO₃ dapat terbentuk satu fasa. Material CaMnO3 dapat dijadikan material termoelektrik tipe-n. Material CaMnO₃ dipasangkan dengan material Ca₃Co₄O₉ sebagai sel termoelektrik. Sel termoelektrik inilah yang dapat digunakan untuk meningkatkan efisiensi energi dengan cara mengubah energi panas menjadi energi listrik secara langsung. Selain itu, hasil penelitian diharapkan dapat menjadi rujukan dalam perkembangan energi alternatif berbasis termoelektrik.

2. PROSEDUR PERCOBAAN

A. Preparasi Sampel

Sintesis material CaMnO₃ menggunakan metode reaksi padatan dengan bahan baku serbuk CaCO₃ (Merck) dan MnCO₃ (Sigma Aldrich). Sintesis diawali dengan penimbangan kedua bahan baku secara stoikiometri. Perhitungan stoikiometri berdasarkan persamaan reaksi kimia 1.

 $CaCO_3 + MnCO_3 + \frac{1}{2}O_2 \rightarrow CaMnO_3 + 2CO_2$ (1)

Pada percobaan sintesis material CaMnO₃, material CaMnO₃ yang hendak dibuat sebanyak 25 gram, maka diperlukan massa CaCO₃ sebesar 17,494 gram, dan massa MnCO₃ sebesar 20,092 gram.

Setelah penimbangan, kedua bahan baku dicampur dan digerus menggunakan *four point planetary ball mill* dengan merk *Systems*. Mesin *mill* ini memutar 4 buah *jar* dengan kapasitas 1 liter dengan kecepatan putar 200 rpm. Campuran bahan baku digerus selama 12 jam. Pada percobaan yang dilakukan Suharno, dkk, waktu *mill* efektif adalah 12 jam^[13]. Hasil penggerusan selanjutnya dikalsinasi untuk mengurangi pengotor. Kalsinasi dilakukan pada suhu 800 °C. Setelah kalsinasi, dilanjutkan dengan peletisasi dengan menggunakan mesin press merk *Shimadzu*. Peletisasi dengan tekanan 140 MPa. Pelet hasil penekanan berdiameter 2,5 cm dengan ketebalan 2 mm. Pelet kemudian disinter menggunakan *tube furnace* pada suhu 1100, 1200, dan 1250 °C selama 6 jam dengan kondisi atmosfir udara bebas tanpa dialiri gas oksigen. Hasil penyinteran didinginkan di dalam tungku sampai suhu kamar.

B. Karakterisasi Sampel

Analisis termal bahan baku serbuk CaCO dan MnCO₃ menggunakan DTA/TGA dengan merk *Setaram TAG 24*. Kemudian sampel hasil sintesis dikarakterisasi menggunakan difraktometer sinar-X merek PHILIPS tipe PW 1710 dengan radiasi Co K α ($\lambda = 1,7903$ Å) untuk mengetahui fasa material yang terbentuk. Pengamatan dilakukan pada rentang sudut 2 θ = 20-80° dan diukur dalam keadaan suhu kamar. Pengamatan mikrostruktur sampel CaMnO₃ hasil sintesis menggunakan citra mikroskop elektron JEOL JSM 6390A yang ada di Pusat Penelitian Metalurgi dan Material-LIPI.

3. HASIL DAN DISKUSI

A. Analisis Termal Bahan Baku

Analisis termal bahan baku pada sintesis CaMnO₃ bertujuan untuk mengetahui perilakunya terhadap perubahan suhu. Perilaku ini berupa perubahan fisik dan fasa yang selanjutnya digunakan sebagai dasar untuk memperkirakan pembentukan material CaMnO₃. Kurva pada Gambar 1a memperlihatkan karakteristik termal bahan CaCO₃. Kurva TGA Gambar 1a menunjukkan bahwa pada suhu 700-800 °C terjadi pengurangan massa yang sangat signifikan. Berdasarkan kurva DTA, pada rentang suhu 700-800 °C terjadi reaksi endotermal. Reaksi endotermal dan pengurangan massa menandakan bahwa sedang terjadi reaksi dekomposisi^[14]. Reaksi dekomposisi CaCO₃ dituliskan pada persamaan reaksi 2.

$$CaCO_{3(s)} \rightarrow CaO_{(s)} + CO_{2(g)}$$
 (2)

Berdasarkan persamaan reaksi 2, terjadinya pengurangan massa dikarenakan dekomposisi CaCO₃ menjadi CaO yang disertai dengan pelepasan gas CO₂.

Gambar 1. Kurva DTA/TGA serbuk; (a) $CaCO_3$ dan (b) $MnCO_3$

Menurut I. Halikia^[14], salah satu faktor yang dapat mempengaruhi hasil analisis termal adalah kemurnian bahan. Selain itu, beberapa hal yang menjadi pertimbangan ketika melakukan pengamatan adalah mekanisme pengendalian (atmosfir pengukuran), persamaan kinetik dan nilai-nilai energi aktivasi.

Sedangkan Gambar 1b memperlihatkan karateristik termal bahan MnCO₃. Analisis ini bertujuan untuk mengetahui suhu terbentuknya fasa Mn₂O₃. Fasa Mn₂O₃ yang diperoleh akan mempermudah dalam proses pembentukan CaMnO₃. Kurva TGA Gambar 1b memperlihatkan bahwa pada rentang suhu 325-450 °C terjadi penurunan massa yang besar. Menurut L. Biernacki and S. Pokrzywnicki^[15,16], pada rentang suhu tersebut terjadi reaksi dekomposisi MnCO₃ menjadi MnO₂ yang dituliskan pada persamaan reaksi 3. Reaksi tersebut berlangsung hingga suhu 430 °C. Setelah reaksi dekomposisi terjadi reaksi reduksi MnO₂ menjadi Mn₂O₃ yang dituliskan pada persamaan reaksi 4. Fasa Mn₂O₃ akan terus terbentuk sampai stabil pada suhu ~877°C^[15,16]. Selanjutnya, fasa Mn₂O₃ akan mengalami transformasi menjadi fasa Mn₃O₄ pada suhu ~913 °C dan MnO pada suhu 1027 °C $^{[15,16]}$.

 $2MnCO_{3(s)}+O_{2(g)} \rightarrow 2MnO_{2(s)}+2CO_{2(g)}$ (3) $4MnO_{2(s)} \rightarrow 2Mn_2O_{3(s)}+O_{2(g)}$ (4) Dengan demikian dapat dikatakan bahwa urutan reaksi yang terjadi adalah dekomposisi sempurna $MnCO_3$ menjadi MnO_2 yang disertai pelepasan gas CO_2 pada suhu ~325 °C dilanjutkan dengan reaksi reduksi MnO_2 menjadi Mn_2O_3 pada suhu ~450 °C.

Dengan terbentuknya fasa CaO dari hasil dekomposisi CaCO₃ dan Mn_2O_3 hasil dekomposisi MnCO₃ pada suhu 800 °C, maka suhu 800 °C dijadikan dasar proses kalsinasi. Sedangkan suhu penyinteran mengacu diagram fasa sistem CaO-Mn₂O₃ seperti yang terlihat pada Gambar 2. Pembentukan senyawa CaMnO₃ dituliskan pada persamaan reaksi 5.

$$2\text{CaO} + \text{Mn}_2\text{O}_3 + \frac{1}{2}\text{O}_2 \rightarrow 2\text{CaMnO}_3 \qquad (5)$$

B. Analisis Difraksi Sinar-X

CaMnO₃ Karakterisasi sampel hasil penyinteran pada suhu 1100 °C, 1200 °C dan 1250 °C menggunakan difraktometer sinar-X. Karakterisasi ini untuk mengetahui fasa yang terbentuk. Hasil difraksi sinar-X yang ditunjukkan pada Gambar 3 memperlihatkan bahwa pola difraksi sampel CaMnO₃ dengan suhu penyinteran 1100 °C adalah fasa tunggal CaMnO₃. Puncak-puncak pola difraksi teridentifikasi milik fasa CaMnO3 sesuai dengan International Centre for Diffraction Data (ICDD) PDF-2 International Centre for Diffraction Data (ICDD) PDF-2 No. 01-089-0666 Tahun 2003^[17]. Database ini mengacu pada hasil percobaan yang dilakukan oleh Hideki Taguchi^[18].

Pola difraksi sinar-X sampel dengan suhu penyinteran 1200 °C dan 1250 °C mempunyai kecenderungan yang sama dengan suhu penyinteran 1100 °C. Dengan demikian dapat dikatakan CaMnO₃ sudah terbentuk pada suhu penyinteran1100 °C.

Gambar 3. Pola difraksi hasil pengamatan, penghalusan dan perbedaannya pada sampel CaMnO₃ hasil penyinteran dengan suhu 1100 °C, 1200 °C, dan 1250 °C

Analisis kuantitatif pola difraksi sinar-X adalah untuk mengetahui fraksi berat dan data kristalografi masing-masing fasa sampel hasil penyinteran. Analisis kuantitatif pola difraksi sinar-X menggunakan metode *Rietvield* dengan system kristal *orthorombic* dan *space group* Pnma^[2,19,20,21,22].

Berdasarkan karakterisasi pola difraksi sinar-X, menunjukkan bahwa terbentuk fasa tunggal CaMnO₃. Fasa-fasa lain seperti CaMn₂O₄, CaMn₃O₇, dan Ca₄Mn₃O₁₀ tidak terbentuk disebabkan oleh perhitungan stoikiometri yang tepat pada preparasi sampel. Fasa CaMnO₃ terbentuk dengan berat stoikimetri bahan baku yang mengandung mangan oksida 42-62 %berat (yang dihitung sebagai Mn_2O_3)^[12]. Sedangkan fasa Ca Mn_2O_4 terbentuk dengan berat stoikiometri bahan baku yang mengandung mangan oksida 74-78 %berat (yang dihitung sebagai Mn_2O_3)^[12].

Menurut V.Berbenni et.al^[23], fasa CaMn₂O₄, CaMn₃O₇, dan Ca₄Mn₃O₁₀ terbentuk melalui proses reaksi padatan pada suhu anil 1000 °C yang ditahan selama 48 jam. Selain pengaruh suhu anil dan waktu penahanan, pembentukan fasa-fasa tersebut juga dipengaruhi oleh waktu *milling*^[23].

Tabel 1. Data kristalografi dan ukuran mikrokristalin sampel CaMnO₃ hasil penghalusan pola difraksi sinar-X menggunakan metode *Rietvield* dengan sistem kristal *orthorombic* dan *space group* Pnma

	Sampel CaMnO ₃		
	$T_s = 1100$	$T_s = 1200$	$T_s = 1250$
Parameter unit sel (Å)	a = 5,262	a = 5,262	a = 5,277
	b = 7,446	b = 7,442	b = 7,452
	c = 5,281	c = 5,275	c = 5,261
Volume unit sel (Å ³)	206,91	206,58	206,88
Rwp (%)	4,67	4,60	4,74
Rp (%)	3,7	3,68	3,74
λ^2	1,083	1,073	1.099

*T_s= suhu penyinteran (°C)

Dari Tabel 1, terlihat bahwa nilai parameter kisi kristal hasil penghalusan pola difraksi sinar-X mempunyai nilai yang berbeda-beda. Secara umum nilai parameter kisi kristal CaMnO₃ hasil penghalusan adalah a = \sim 5,26 Å; b = \sim 7,44 Å; dan c = \sim 5,27 Å.

C. Analisis Mikrostruktur

Mikrostruktur sampel CaMnO₃ hasil penyinteran dengan suhu 1100 °C, 1200 °C, dan 1250 °C diamati menggunakan citra mikroskop elektron. Gambar 4 merupakan visualisasi sampel CaMnO₃ dari masing-masing kondisi penyinteran menggunakan pencitraan mikroskop elektron. Tiap sampel CaMnO₃ menunjukkan struktur polikristalin dengan batas butir yang terlihat jelas dan memiliki kerapatan yang homogen dengan besar butir $< 5\mu m$. Selain itu, terdapat beberapa perbedaan yang dapat diketahui dari tiap kondisi penyinteran seperti ukuran butir dan jumlah void. Semakin tinggi suhu, ukuran butir akan semakin kecil dan kerapatan butir semakin meningkat. Fenomena tersebut mengindikasikan bahwa peningkatan suhu memiliki kecenderungan dalam mereduksi porositas yang ditunjukkan dengan semakin sedikitnya void pada sampel.

Gambar 4. Citra mikroskop elektron sampel CaMnO $_3$ dengan suhu penyinteran 1100 °C, 1200 °C, dan 1250 °C

4. KESIMPULAN

Sintesis CaMnO₃ telah berhasil dilakukan. Fasa CaMnO₃ telah terbentuk pada suhu penyinteran 1100 °C. Parameter kristal hasil analisis kuantitatif adalah a = \sim 5,62 Å; b = \sim 7,44 Å; dan c = \sim 5,27 Å. Sedangkan pengaruh suhu memiliki kecenderungan semakin tinggi suhu, ukuran butir akan semakin kecil dan jarak antar butir semakin rapat.

UCAPAN TERIMA KASIH

Penulis memberikan ucapan terima kasih kepada Alm. Dr. Muhammad Hikam atas ijin pemakaian perangkat lunak *Bella* dan Jurusan Ilmu bahan-bahan Fakultas MIPA Universitas Indonesia atas fasilitas difraktometer sinar-X.

DAFTAR PUSTAKA

- W. Park, D. H. Kwak, S. H. Yoon, and S. C. Choi, "Thermoelectric properties of Bi, Nb co-substituted CaMnO3 at high temperature," *J. Alloys Compd.*, vol. 487, no. 1–2, pp. 550–555, 2009.
- [2] F. P. Zhang, Q. M. Lu, X. Zhang, and J. X. Zhang, "First principle investigation of electronic structure of CaMnO3 thermoelectric compound oxide," *J. Alloys Compd.*, vol. 509, pp. 542–545, 2011.
- [3] J. W. Fergus, "Oxide materials for high temperature thermoelectric energy conversion," *J. Eur. Ceram. Soc.*, vol. 32, no. 3, pp. 525–540, 2012.
- [4] D. Prakash, R. D. Purohit, M. Syambabu, and P. K. Sinha, "Development of High Temperature Thermoelectric Materials and Fabrication of Devices," Tehenology Development Article, no. 320, pp. 17–25, 2011.
- [5] P. Phaga, a. Vora-Ud, and T. Seetawan, "Invention of Low Cost Thermoelectric Generators," *Procedia Eng.*, vol. 32, pp. 1050–1053, 2012.
- [6] K. R. Poeppelmeier, M. E. Leonowicz, J. C. Scanlon, J. M. Longo, and W. B. Yelon, "Structure determination of CaMnO3 and CaMnO2.5 by X-ray and neutron methods," *J. Solid State Chem.*, vol. 45, no. 1, pp. 71– 79, 1982.
- [7] H. Taguchi, M. Nagao, T. Sato, and M. Shimada, "High-temperature phase transition of CaMnO3-δ," *J. Solid State Chem.*, vol. 78, pp. 312–315, 1989.
- [8] N. Pandey, A. K. Thakur, and R. N. P. Choudhary, "Studies on dielectric behaviour of an oxygen ion conducting," *Indian J. Eng. Mater. Sci.*, vol. 15, no. April, pp. 191–195, 2008.
- [9] H. Horowitz and J. M. Longo, "Phase Relations in The Ca-Mn-O System," *Mater. Res. Bull.*, vol. 13, pp. 1359–1369, 1978.
- [10] F. M. Nareetsile, "Solventless Isomerisation Reactions of Six-coordinate Complexes of Ruthenium and Molybdenum," 2005.
- [11] B. Brezny, W. R. Ryall, and A. Muan, "Activity-Composition Relations in CaO-MnO Solid Solutions at 1100-1300°C," *Mat. Res. Bull*, vol. 5, no. 68, pp. 481–488, 1970.
- [12] P. V Riboud and A. Muan, "Melting Relations of CaO-Manganese Oxide and MgO-Manganese Oxide Mixtures in Air," *J. Am. Ceram. Soc.*, vol. 46, no. 1, pp. 33– 36, 1960.

- [13] Suharno, A. Purwanto, A. Fajar, B. Kurniawan, H. Mugihardjo, and W. A. Adi, "Penentuan Struktur Magnetik CaMnO3 Dengan Difraksi Neutron," J. Sains Mater. Indones., pp. 202–205, 2006.
- [14] Halikia, L. Zoumpoulakis, E. Christodoulou, and D. Prattis, "Kinetic study of the thermal decomposition of calcium carbonate by isothermal methods of analysis," *Eur. J. Miner. Process. Environ. Prot.*, vol. 1, no. 2, pp. 89–102, 2001.
- [15] L. Biernacki and S. Pokrzywnicki, "The thermal decomposition of manganese carbonate Thermogravimetry and exoemission of electrons," *J. Therm. Anal. Calorim.*, vol. 55, pp. 227–232, 1999.
- [16] K. Qian, Z. Qian, Q. Hua, Z. Jiang, and W. Huang, "Structure–activity relationship of CuO/MnO2 catalysts in CO oxidation," *Appl. Surf. Sci.*, vol. 273, pp. 357–363, 2013.
- [17] García, "Synthesis, microstructure and EPR of CaMnO3 and EuxCa1-x MnO3 manganite, obtained by coprecipitation," *J. Mex. Chem. Soc.*, vol. 55, no. 4, pp. 204– 207, 2011.
- [18] H. Taguchi, "Relationship between Crystal Structure and Electrical Properties of the

Ca-Rich Region in (La1-x Cax) MnO2.97," *J. Solid State Chem.*, vol. 365, pp. 360–365, 1996.

- [19] Q. Zhou and B. J. Kennedy, "Thermal expansion and structure of orthorhombic CaMnO3," J. Phys. Chem. Solids, vol. 67, pp. 1595–1598, 2006.
- [20] K. Nakade, K. Hirota, M. Kato, and H. Taguchi, "Effect of the Mn3+ ion on electrical and magnetic properties of orthorhombic perovskite-type Ca(Mn1xTix)O3-d," *Mater. Res. Bull.*, vol. 42, pp. 1069–1076, 2007.
- [21] J. Dukić, S. Bošković, and B. Matović, "Crystal structure of Ce-doped CaMnO3 perovskite," *Ceram. Int.*, vol. 35, no. 2, pp. 787–790, 2009.
- [22] A. C. Larson and R. B. Von Dreele, "General Structure Analysis System (GSAS)," Los Alamos Natl. Lab. Rep. LAUR 86-748, vol. 748, 2004.
- [23] V. Berbenni, C. Milanese, G. Bruni, P. Cofrancesco, and A. Marini, "Solid State Synthesis of CaMnO3 from CaCO3-MnCO3 Mixtures by Mechanical Energy," *Z. Naturforsch*, vol. 3, pp. 281–286, 2006.