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Intisari 
 

PENDEKATAN PERSAMAAN GINZBURG – LANDAU DALAM SUPERKONDUKTIFITAS TIPE II. 

Makalah ini membahas tentang persamaan Ginzburg-Landau (GL) yang diaplikasikan pada material 

superkonduktor tipe II. Untuk menyederhanakan situasi, mobilitas vorteks diminimalisir dengan melakukan 

pinning. Faktor pinning dimasukkan ke dalam persamaan GL. Dalam hal ini kondisi kesetimbangan pada teori 

GL berhubungan dengan titik kritis pada fungsional energi-bebas Helmholtz. Model ini kemudian dijustifikasi 

oleh teori mikroskopis Bardeen – Cooper – Schriefer (teori BCS), dengan memasukkan kerapatan lokal dari 

pasangan elektron superkonduktif ”pasangan Cooper”. Untuk kondisi vorteks dinamis, teori yang dipakai 

menggunakan pendekatan tipe-Schrödinger digabung dengan persamaan tipe-Maxwell yang melahirkan model 

Schrödinger -Ginzburg-Landau (SGL) serta fungsional Ginzburg-Landau yang bergantung kepada waktu. Pada 

akhirnya, fenomena efek Meissner, di mana medan magnet dikeluarkan dari bahan superkonduktor, juga 

diakomodasi ke dalam persamaan.  

 

Kata kunci : Superkonduktifitas, Superkonduktor tipe II, Persamaan Ginzburg – Landau, Pinning, Efek Meissner 

 
Abstract 

 

APPROXIMATION OF GINZBURG – LANDAU EQUATIONS IN TYPE II SUPERCONDUCTIVITY. The 

Ginzburg-Landau (GL) equation is applied for the type II superconducting materials. To simplify the complex 

situation, the mobility of vortices is firstly reduced by pinning them. The pinning term is then introduced into the 

equation. An equilibrium state in GL theory corresponds to a critical point of the Helmholtz free-energy 

functional. The model has been justified by the microscopic theory of Bardeen – Cooper – Schrieffer (BCS 

theory), by introducing the local density of superconducting electron pairs, called “Cooper pairs”. For the 

dynamic condition of vortices, the theory uses Schrödinger-type dynamics for the order parameter coupled to a 

Maxwell-type equation for the magnetic field potential leading to the Schrödinger -Ginzburg-Landau (SGL) 

model as well as time-dependent Ginzburg Landau (TDGL) functional. Finally the diagmagnetism of Meissner 

effect, of which the magnetic field is expelled from the superconductor, is also accommodated. 

 

Keywords : Superconductivity, Type II superconductor, Ginzburg – Landau equation, Pinning, Meissner effect 

 

 

INTRODUCTION 

 

The interior of a bulk superconductor 

cannot be penetrated by a weak magnetic 

field, a phenomenon known as the 

Meissner effect. When the applied 

magnetic field becomes too large, 

superconductivity breaks down. 

Superconductors can be divided into two 

types according to how this breakdown 

occurs. In type-I superconductors, 

superconductivity is abruptly destroyed via 

a first order phase transition when the 

strength of the applied field rises above a 

critical value cH . This type of 

superconductivity is normally exhibited by 

pure metals, e.g. aluminum, lead, and 

mercury. Depending on the 

demagnetization factor, one may obtain an 

intermediate state. This state, first 

described by Lev Landau, is a phase 

separation into macroscopic non-

superconducting and superconducting 
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domains. For type-I superconductors in 

sufficiently low magnetic fields the 

material is in the superconducting state, 

and the field is excluded from the interior 

of the sample except in thin boundary 

layers (this effect is known as the Meissner 

effect). However, there is a critical 

magnetic field cH , above which the 

material will revert to the normally 

conducting (normal) state, and the 

magnetic field will penetrate it fully. 

This behavior is different from type-II 

superconductors which exhibit two critical 

magnetic fields. The first, lower critical 

field occurs when magnetic flux vortices 

penetrate the material but the material 

remains superconducting outside of these 

microscopic vortices. When the vortex 

density becomes too large, the entire 

material becomes non-superconducting; 

this corresponds to the second, higher 

critical field. 

In type-II superconductors this critical 

magnetic field splits into a lower critical 

field, 1cH and an upper critical field 2cH . 

For magnetic fields below 1cH  the material 

is in the superconducting state and the field 

is excluded from the interior, while for 

magnetic fields above 2cH  the material is 

in the normal state and the field penetrates 

it fully. For magnetic fields between 1cH  

and 2cH  a third state exists, known as the 

“mixed state”, in which there is a partial 

penetration of the magnetic field into the 

superconducting material, which occurs by 

means of thin filaments of non-

superconducting material carrying 

magnetic flux (“flux tubes”) and circled by 

a vortex of superconducting current (hence 

these filaments are often referred to as 

vortices).  

At the time that Ginzburg and Landau 

proposed their theory, it was thought that 

the transition between the superconducting 

and normal phases is always accompanied 

by positive surface energy, so that the 

minimum energy principle would lead to 

relatively few such transitions in a sample 

of material. Indeed, this agreed with 

experimental observations in what is now 

known as type I superconductors. Then, in 

1957, Abrikosov investigated what would 

happen if the surface energy 

accompanying phase transitions was 

negative. The (Ginzburg – Landau) GL 

theory then predicts that, in order to 

minimize the energy, there would be 

relatively many phase transitions in a 

material sample, and that indeed the 

normal and superconducting state could 

coexist in what is known as the mixed 

state. About ten years later, such type II 

superconductors were observed 

experimentally. It is another remarkable 

feature of the GL theory that it allowed for 

such materials, even before their existence 

was known. From a technological 

standpoint, type II superconductors are the 

ones of greatest interest, mainly because 

they can retain superconductivity 

properties in the presence of large applied 

magnetic fields. Due to the extremely low 

temperature necessary for known 

materials, e.g., metals, to become 

superconducting, their practical usefulness 

was very limited and therefore general 

interest in superconductivity waned. 

However, after the recent advances in 

cryogenics and, even more so, after the 

recent discovery of high-temperature 

superconductors, there has naturally been a 

resurgence in interest. One question that 

arises is the applicability of the GL theory, 

or some variant of it, to high-temperature 

superconductors. In this regard, no general 

consensus has been reached. Our short 

introduction by no means does justice to 

the history nor do we intend to give a full 

description of even the GL theory
[1-2]

. 
 

THE GINZBURG – LANDAU MODEL 

 

The starting point for our discussion of 

models of superconductivity is the 

Ginzburg-Landau equations. In their 1950 

paper Ginzburg & Landau introduced the 

complex superconducting order parameter 
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 , which is such that 
2

  represents the 

number density of superconducting charge 

carriers (Cooper pairs). The need for   to 

be complex is associated with the 

macroscopic quantum nature of 

superconductivity;   can be thought of as 

an averaged macroscopic wavefunction of 

the superconducting electrons. The 

ultimate justification for a complex order 

parameter came in 1957, when Gor’kov 

demonstrated that the Ginzburg-Landau 

equations could be derived as a limit of the 

microscopic theory of Bardeen - Cooper - 

Schrieffer (BSC). 

We consider a superconductor material 

occupying a domain   3 , in a 

uniform exterior magnetic fields 30eH . 

The state of the superconductor is 

characterized by a complex order 

parameter   (defined on  ) such that 
2

  represents the number density of 

superconducting electrons, which may be 

thought of as a kind of “macroscopic 

wavefunction”, and the magnetic vector 

potential  , which is such that the 

magnetic field is given by  curl . In 

the theory introduced by Ginzburg and 

Landau the equilibrium state of the 

superconductor is given by the minimiser 

of the Ginzburg and Landau energy 
[3-4]

:  
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THE GINZBURG – LANDAU MODEL 

WITH A PINNING TERM 
 

In most technological applications 

superconductors are required to carry a 

transport current. The interaction of this 

current with the current circling a vortex 

causes the vortex to move (this is often 

considered to be the result of the “Lorentz 

force” on the magnetic flux line carried by 

the vortex due to the transport current). 

The motion of the vortex dissipates energy, 

leads to an electric field, and hence a 

nonzero resistivity, and is therefore 

undesirable. In practice attempts are made 

to “pin” vortices at certain sites in the 

material in order to impede their motion. It 

is found that any form of inhomogeneity 

(for example impurities, dislocations or 

grain boundaries) will help to pin vortices. 

Such impurities have the effect of 

impeding locally the ability of the material 

to become superconducting. A popular 

way of modelling this inhomogeneity in 

the Ginzburg-Landau framework is to 

allow the equilibrium density of 

superconducting electrons to vary 

spatially. 

Recall that in the framework of the 

Ginzburg – Landau theory, the state of the 

material is completely described by a 

vector potential A and a complex-valued 

function u , which can be thought of as a 

wave-function of the superconducting 

electrons, and is nondimensionalized such 

that 1u . The type of material is 

characterized by the Ginzburg – Landau 

parameter   and the case of type II,   is 

large so that we define 


 1 , which will 

be small. The energy is the following: 

 

     


2

2

1
, uiuJ  

   2
22

22

1
exhhux 


    (3.1)

    

Here,   is the domain occupied by the 

superconductor,  curlh  is the magnetic 

field and hex is the exterior magnetic field 

which is constant is our problem. A 

common simplification is to restrict to a 

two-dimensional problem corresponding to 

an infinite cylindrical domain of section 
2 (smooth and simply connected), 

for an applied field parallel to the axis of 

the cylinder. Then 2:   ,  h is real – 
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valued and all the quantities are translation 

invariant
[5]

. 

 

THE GINZBURG – LANDAU MODEL 

OF SUPERCONDUCTIVITY 

 

In the Ginzburg-Landau theory of phase 

transition, the state of a superconductor is 

described by a complex – valued order 

parameter   and a real vector – valued 

vector potential  . The order parameter 

can be thought as the wave function for the 

center-of-mass motion of the 

“superelectrons” (Cooper pairs), whose 

density is 
2

 s . The vector potential 

determines the magnetization, which is the 

difference between the induced magnetic 

field xAB   and the applied magnetic 

field  . 

An equilibrium state corresponds to a 

critical point of the Helmholtz free-energy 

functional. In the Ginzburg-Landau theory, 

this functional is given by the expression 
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Here,   is the region occupied by the 

superconductor; we assume that   is a 

bounded domain in n ( n  = 2 or n  = 3), 

with boundary  . The vector potential 

  and the applied magnetic field   take 

their values in n . The (dimensionless) 

Ginzburg-Landau parameter   is the ratio 

of the characteristic length scales for the 

vector potential and the order parameter. 

The functional   is defined on  , and 

  0x  for x . As usual,   grad, 

x  curl,   div, and 2 ; 

i  is the imaginary unit. 

The Ginzburg-Landau model was 

introduced in the fifties by Ginzburg and 

Landau as phenomenological model of 

superconductivity. In this model, the Gibbs 

energy of superconducting material, 

submitted to external magnetic fields is in 

a suitable normalization,  
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Here,   is the domain occupied by the 

superconductor,   is a dimensionless 

constant (the Ginzburg-Landau parameter) 

depending only on characteristic lengths of 

the material and of temperature. exh  is the 

applied magnetic field, 3:    is the 

vector – potential, and the induced 

magnetic field in the material is curlAh  . 

 iA  is the associated covariant 

derivative. The complex-valued function 

u  is called the “order-parameter”. It is a 

pseudo-wave function that indicates the 

local state of the material. There can be 

essentially two phases in a superconductor: 

 xu  ~ 0 is the normal phase,  xu  ~ 1, 

the superconducting phase. The Ginzburg - 

Landau model was based on Landau’s 

theory of phase – transitions. Since then, 

the model has been justified by the 

microscopic theory of Bardeen – Cooper – 

Schrieffer (BCS theory).  xu  is then 

understood as the local density of 

superconducting electron pairs, called 

“Cooper pairs”, responsible for the 

superconductivity phenomenon
[6]

.  
A common simplification, that we 

make, is to restrict to the two-dimensional 

model corresponding to a infinite 

cylindrical domain of section 2  

(smooth and simply connected), when the 

applied field is parallel to the axis of the 

cylinder, and all the quantities are 

translation-invariant. The energy – 

functional then reduces to  
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Then 2: A , h  is real-valued, and 

exh  is just a real parameter. The Ginzburg-
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Landau equation associated to this 

functional are 
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with the boundary conditions  
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(Here   denotes  12 , xx   and .,.  

denotes the scalar-product in 2 .) One can 

also notice that the problem is invariant 

under the gauge-transformations: 
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AA
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where   ,2H . Thus, the only 

quantities that are physically relevant are 

those that are gauge invariant, such as the 

energy J, the magnetic field h , the 

current Auiuj  , , the zeros of u. We 

saw in  1,1 SSS  that, up to a gauge-

transformation, the natural space over 

which to minimize J 

is      211 ,,,  HxCHAu . 

 

DYNAMIC GINZBURG-LANDAU 

EQUATIONS 

 

Our model for a dynamic theory of 

superconductivity uses Schrödinger-type 

dynamics for the order parameter coupled 

to a Maxwell-type equation for the 

magnetic field potential. This Schrödinger 

-Ginzburg-Landau (SGL) model was first 

proposed in based on arguments of R. 

Feynman. The SGL equations retain gauge 

invariance and can be viewed as a model 

for charged superfluids and other Bose-

Einstein condensates which are coupled to 

Maxwell-type equations, such as in 

neutron stars. In addition to u  and   there 

is an electric field potential   such that 

 tE  for the induced electric 

field E. The SGL system consists of  
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where   and D are microscopic 

parameters and 1v  measures the 

conductivity of normal electrons.   

measures the normal conductivity of the 

medium, and superconducting alloys have 

  of the order 310 , and 2  measures 

relativistic effects and is of the order 910  

~ 1110 . Since it would take an extremely 

long time to feel the effects of the 2  term 

(far beyond the time frame of the 

asymptotics that follow), we set 02  . 

Suitably nondimensionalizing the SGL 

equations, we have 
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for   small. The unusual coupling of a 

nonlinear Schrödinger equation to a 

parabolic equation for the magnetic field 

potential results in rather nontrivial 

behavior. When the electromagnetic field 

is not present, the equations become a 

nonlinear Schrödinger equation 
 

 22 1
1

uuuu
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and is sometimes referred to as the Gross-

Pitaevskii equation, especially in the 

context of the theory of superfluids. 

A more widely studied dynamic model 

of superconductivity, called the time-

dependent Ginzburg-Landau (TDGL) 

equations, can be formally derived from 

microscopic quantum theory and are 

sometimes referred to as the Gorkov-
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Eliashburg equations. The TDGL 

equations are  
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The TDGL equations are essentially a 

gradient flow of the Ginzburg-Landau 

functional  
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that preserves a gauge symmetry. After a 

suitable nondimensionalization we have 

the equations
[7]

. 
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SUPERCONDUCTIVITY AND 

GAUGE INVARIANCE OF THE 

GINZBURG-LANDAU EQUATIONS 

 

The most outstanding property of a 

superconductor is the complete 

disappearance of the electrical resistivity at 

some low critical temperature cT , which is 

characteristic of the material. However, 

there exists a second effect which is 

equally meaningful. This phenomenon, 

called Meissner effect, is the perfect 

diamagnetism. In other words, the 

magnetic field is expelled from the 

superconductor, independently of whether 

the field is applied in the superconductive 

state (zero-field-cooled) or already in the 

normal state (field-cooled).  

In the London theory it is assumed that 

the supercurrent sJ  inside the 

superconductor is related to the magnetic 

field H by the constitutive equation 

HJx s   where  x  is a scalar 

coefficient characteristic of the material 

and   is the magnetic permeability. The 

equation HJx s   is able to describe 

both the effects of superconductivity, 

namely the complete disappearance of the 

electrical resistivity and the Meissner 

effect.  

An important step in the 

phenomenological description of 

superconductivity was the Ginzburg-

Landau theory, which describes the phase 

transition between the normal and the 

superconducting state.  

Landau argued that this transition 

induces a sudden change in the symmetry 

of the material and suggested that the 

symmetry can be measured by a complex-

valued parameter, called order parameter. 

The physical meaning of   is specified by 

saying that 
22 f  is the number 

density, sn ,  of superconducting 

electrons. Hence   = 0 means that the 

material is in the normal state, i.e. T  > cT  

while   = 1 corresponds to the state of a 

perfect superconductor (T  = 0).  

There must exist a relation between     

and the absolute temperature T  and this 

occurs through the free energy e. If the 

magnetic field is zero, at constant pressure 

and around the critical temperature cT  the 

free energy 0e  is written as  

 

    42

0  TbTe       (6.1) 

 

where higher-order terms in 
4

  are 

neglected, so that the model is valid around 

the critical temperature cT  for small values 

of  .  

Suppose that the superconductor 

occupies a bounded domain  , with 

regular boundary   and denote by n the 

unit outward normal to  . If a magnetic 
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field occurs, then the free energy of the 

material is given by 
[8]
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CRITICAL MAGNETIC FIELDS 

 

There are three main critical values of 

exh  or critical fields 1cH , 2cH , and 3cH , 

for which phase-transitions occur. Below 

the first critical field, which is of  logO  

(as first established by Abrikosov), the 

superconductor is everywhere in its 

superconducting phase u  ∼ 1 and the 

magnetic field does not penetrate (this is 

called the Meissner effect or Meissner 

state). At 1cH , the first vortice(s) appear. 

Between 1cH  and 2cH , the 

superconducting and normal phases (in the 

form of vortices) coexist in the sample, and 

the magnetic field penetrates through the 

vortices. This is called the mixed state. The 

higher exh  > 1cH  , the more vortices there 

are. Since they repel each other, they tend 

to arrange in these triangular Abrikosov 

lattices in order to minimize their 

repulsion. Reaching 2cH  ∼ 
2

1


 , the 

vortices are so densely packed that they 

overlap each other, and at 2cH  a second 

phase transition occurs, after which u  ∼ 0 

inside the sample, i.e. all superconductivity 

in the bulk of the sample is lost.  

In the interval  32 , cc HH  however, 

superconductivity persists near the 

boundary, this is called surface 

superconductivity. Above 









23

1


OH c  

(defined in decreasing fields), the sample 

is completely in the normal phase 0u , 

the magnetic field completely penetrates, 

and decreasing the field below 3cH , surface 

superconductivity is observed. 

Type I and type II superconductors have 

another distinguishing feature, the 

magnetic fields at which the Meissner 

effect takes place. A type I superconductor 

will display the Meissner effect until a 

critical external field cIB  destroys the 

superconducting state. A type II 

superconductor will display the Meissner 

effect until a critical field cIIB  when 

vortices start to form and allow part of the 

field to penetrate it. Increasing the 

magnetic field strength further will create 

more and more vortices until there are so 

many superconductivity is destroyed.  

Now consider a type II superconductor, 

there are both energy gradients and 

magnetic field inside the superconductor. 

We use the energy of a vortex we 

calculated earlier and this time the 

magnetic field inside the vortex intB  

couples with the external field extB  through 

the interaction term.  

 

















 


22

8

1
log





q

c

u

v

m
Evortex






8
int2 extBB

dx         (7.1) 

 
The last term can be simplified as this 

integral is the flux quantization, 

 
q

c
Bdx


2int

2 . The energy E = 0 is 

when a vortex will first form inside the 

superconductor
[9-10]

. 

 





















 





log

1

4

14

mcu

qv
BCII


   (7.2) 

 

CONCLUSION 

 

In the GL theory, the density of 

superconducting charge-carriers, and thus 

the order parameter, is allowed to be 

spatially varying. Then, another 
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consequence of the interpretation of   as 

a wave-function is the existence of a 

kinetic energy density associated with 

spatial variations of   that must be 

accounted for in the free energy density. 

Variations in the order parameter should 

penalize the energy, so that it is natural to 

add to the free energy density a term 

proportional to 
2

 .  

Finally we note that in our analysis the 

equilibrium density of superconducting 

electrons was always strictly positive. It 

remains an interesting open question to 

study the effects of allowing the coefficient 

of f  in Equation 

  23

2

2 1
Qffxff

t

f








   to 

be positive, so that the equilibrium density 

of superconducting electrons is zero; our 

law of motion suggests that the pinning 

force will be an order of magnitude in   

stronger in this case. 

They must be of the form  0,00 A , 

where  00 A  is a solution of the time-

independent GL equation. We have also 

shown that a weak solution of the TDGL 

equation in the “  A  ” gauge  0  

defines a weak solution of the time-

independent GL equations in the limit of 

large times.  
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