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Intisari 
 
SEKILAS TENTANG TEORI FUNGSIONAL KERAPATAN ELEKTRON PADA 

SUPERKONDUKTOR. Teori fungsional kerapatan elektron atau density functional theory (DFT) digunakan 

untuk menjelaskan interaksi elektron pada material superkonduktor. Makalah ini membahas aspek mendasar 

untuk inisiasi penggunaan DFT, seperti aproksimasi kerapatan lokal atau local density approximation (LDA) 

serta transformasinya menjadi sistem yang bergantung terhadap waktu atau time dependent system (TDDFT) dan 

kondisi superkonduktif atau superconducting state (SCDFT). Teorema Hamiltonian dan Kohn-Sahm 

dipergunakan untuk menghitung energi sistem yang berinteraksi maupun yang tidak berinteraksi. Persamaan 

Schrödinger yang independen terhadap waktu diselesaikan untuk mengetahui posisi elektron terisi maupun tidak 

terisi serta respon mereka terhadap pengaruh eksternal seperti medan optik. Pemodelan menghasilkan konstruksi 

dari LDA superkonduktor. 

 

Kata kunci : Teori fungsional kerapatan elektron, Aproksimasi kerapatan lokal, Sistem Hamiltonian, Teorema 

Kohn-Sahm, Superkonduktor 

 

Abstract 

 
OVERVIEW OF DENSITY FUNCTIONAL THEORY FOR SUPERCONDUCTORS. The density functional 

theory (DFT) has been utilized to describe the electron interaction in superconducting materials. This paper 

discusses the fundamental aspects to begin with the DFT, including local density approximation (LDA) as well 

as its necessary transformation into time dependent system (TDDFT) and superconducting state (SCDFT). The 

Hamiltonian and Kohn-Sahm theorems along with Helmann-Feymann theorem are utilized to yield the energy of 

interacting and non-interacting systems. The procedures begins with the utilization of time-independent 

Schrödinger equation which is solved for occupied and unoccupied states.  The equation is also computed 

against linear and non-linear responses of the material system to the external forces such as optical field. The 

results indicate construction of an LDA for superconductors. 
 

Keywords : Density functional theory, Local density approximation, Hamiltonian system, Kohn-Sahm theorem, 

Superconductor 

 

 

INTRODUCTION 

 

A successful approach that is common 

in electronic structure calculations is to use 

ab initio pseudopotentials within density 

functional theory (DFT). DFT has been 

very popular for the numerical calculation 

in the area of solid-state physics since 

1970s. This DFT approach has been used 

to predict mechanical, chemical, and 

electronic properties of many classes of 

solids, liquids, molecules, and more. In 

density functional theory, the original N-

electron problem is converted into an 

effective one-electron problem, where all 

non-classical electron interactions (namely, 

exchange and correlation) are replaced by 

an additive one-electron potential that is a 

functional of the charge density. While this 

mapping is formally exact, it is 

approximate in practice because the exact 

functional is unknown. DFT possesses 
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limitation in properly describing 

intermolecular interactions characterized 

by van der Waals forces (dispersion of 

noble gases’ atoms
[1]

), biomolecular 

interaction
[2]

, as well as calculations in 

band gap of semiconductors. Alterations of 

the functional and inclusion of additive 

terms have become a recent progress in the 

attempts to further develop and improve 

DFT
[3-6]

. A common approximation to this 

functional, which is used in this paper, is 

the Local Density Approximation (LDA) 

where the exchange-correlation functional 

is defined as a local function of the charge 

density. However, because traditional 

time-independent DFT is inherently a 

ground-state theory it is not suitable for the 

computation of electronic excitations in 

general, and optical properties in 

particular. A generalized, time-dependent 

DFT (TDDFT) formalism has been 

developed which allows the computation 

of excited state properties. This approach 

was applied successfully to a wide range of 

atoms and small molecules. Optical 

properties of larger systems of molecules, 

clusters, or “quantum dots” (small 

fragments of bulk material) in the range of 

many hundreds of atoms are much harder 

to address despite their outstanding 

importance in physics. This is primarily 

due to severe computational limitations.  

In 1988, triggered by the remarkable 

discovery of the high-Tc materials, 

Oliveira, Gross and Kohn (OGK) proposed 

a density functional theory for the 

superconducting state (SCDFT). Up to 

now, the success of SCDFT has been fairly 

limited, essentially due to the nonexistence 

of adequate xc functionals. Several recent 

developments may, however, bring 

SCDFT to a much wider audience. 
 

APPROXIMATE DENSITY 

FUNCTIONAL 

 

A well known method for the derivation 

of approximate density functionals is the 

coupling constant integration technique, 

which provides a relation between the 

interacting and the non-interacting system 

by introducing a Hamiltonian 
ˆ H   ˆ T  ˆ V   

ˆ W , with V defined such 

that for each [0,1] the same ground state 

density  is obtained. In this way the fully 

interacting system corresponds to =1 with 

external potential v=V=1, while the 

Kohn-Sham system is described by =0 

with vs=V=0. Denoting the ground-state 

for coupling constant  by , application 

of the Helmann-Feynman theorem yields a 

relation between the energy of the 

interacting and non-interacting system, 
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where E(0) corresponds to the artificial 

non-interacting energy, and E(1) to the 

ground state energy of the interacting 

system. Using (2.3) – (2.5) 
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the following expression for the xc-energy 

can be obtained 
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Good approximations to Exc can thus be 

obtained by constructing good 

approximations to the lambda integrated 

coupling constant pair correlation function 

g
[7-10]

. 

 
FORMALISM 

 

The procedure begins with the solution 

of the time-independent Schrödinger 

equation, using the pseudo-potential DFT 

formulation in the domain  , 
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In the above equation, n  and n  

denote the n
th

 single-electron eigenfunction 

and eigenvalue respectively. The charge 

density, denoted by )(r , is the sum of 

squares of the eigenfunctions )(rn  

associated with the occupied states. 

Finally, VH is the Hartree (electron-

electron) interaction potential, Vps is the 

pseudo-potential which represents the 

interactions between ions located in R  

and Vxc is the exchange-correlation 

potential. The above equation is solved for 

all occupied states and a number on 

unoccupied states resulting in a set of 

eigenpairs jj  , . The eigenfunctions are 

then used to assemble the coupling matrix 

K in the form: 
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where   is the physical domain, which is 

a subset of 3 . Given this, the optical 

absorption spectrum of a system of 

molecules is computed as, 12

11 FQF   

where  
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with )()( jiij ff   is the difference 

between occupied states (f denotes the 

Fermi-Dirac function) and jiij   . 

The term ij  is directly related to the 

optical transition energy.  

The eigenvalues and eigenfunctions of 

the matrix Q( ) are then computed and, 

finally, the oscillator strengths associated 

with the transition energy I  are obtained 

as follows: 
 
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   for the 

three cartesian directions  zyx ,, [7-10]
. 

 

LINEAR RESPONSE 

 

The most common application is the 

response to a weak long-wave length 

optical field,  

 

ztitext )exp()(  r      (4.1) 

 

In the general case of the response of the 

ground-state to an arbitrary weak external 

field, the system’s first-order response is 

characterized by the non-local 

susceptibility 
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This susceptibility   is a functional of the 

ground-state density, )(0 r . A similar 

equation describes the densityresponse in 

the KS system: 
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Here s  is the Kohn-Sham response 

function, constructed from KS energies 

and orbitals: 
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where q is a double index, representing a 

transition from occupied KS orbital i to 

unoccupied KS orbital   iq ,  

and )()()( *
rrr  iq  . 0+ means the 

limit as 0+ goes to zero from above (i.e., 

along the positive real axis). Thus s  is 

completely determined by the ground-state 

KS potential. It is the susceptibility of the 

non-interacting electrons sitting in the KS 

ground-state potential. 

Since )(rHXC  is due to an infinitesimal 

change in the density, it may be written in 

terms of its functional derivative, i.e.,  
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After Fourier transforming in time, the 

central equation of TDDFT linear response 

is a Dyson-like equation for the true   of 

the system
[7-10]

: 

 

 

21
1

3)'(
'

)'(
' 






 rd

S
rrrr   

)
1

(
1

2
3 


 rr

S
rd

 



















)
21

(
21

21

1



rr

rr
XC

fx

 )'
2

(
'

2




 rr      (4.6) 

 

Figure 1 shows the dipole response of this 

simple system, which is essentially a 

plasmon resonance, using the linear-

response equations enumerated above, and 

compared with a simple Runge–Kutta 

calculation of the response. The agreement 

is excellent. 

 

 
 
Figure 1. The dipole spectrum for a metallic 

(jellium) shell of density 
3

00088.0 an  . The 

solid line shows the result of the Fourier 

transformed spectrum directly from the full TD 

Kohn–Sham equations, and the dotted line shows 

the results of the linearized Chebyshev 

propagation
[11]

 

 

NONLINEAR RESPONSE 

 

The nonlinear response functions appear 

in  
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as not uniquely determined, since there are 

permutation symmetries of the applied 

field E(t) that may appear in different 

order. To see this for the second-order 

response function, we write ),;( 21

)2( tttijk  as 

the sum of a symmetric part and an 

antisymmetric part, 
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which are symmetric and antisymmetric 

under the interchanging the pairs of 

variables (j, t1) and (k, t2)
 [7-10]

. 

 

TDDFT ON EXCITATIONS 

 

The KS excitations are the energy 

different between the excited states and the 

ground state. Since the KS system only has 

the same ground state density as the real 

system, it can not give correct excitation 

information from its excited orbitals. Even 

for the ground state, the total energy of the 

orbitals are not the true ground state 

energy. 

For the KS system of the toy model, the 

orbitals are the solutions to 
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)(),(),( 321 xxx  , and so on, with energies 

of 21,  and 3 . So the singlet states are : 
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first excited state, 

      2111211,1 , xxxx  ,      (6.3) 

second excited state, 
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third excited state, 

.......... 

 

The energies of the KS system are the 

summation of the orbital energies, so 
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Thus the KS transition frequencies are 
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And we can see that (0, 1) and (0, 2) are 

single excitations and (1, 1) is a double 

excitation since both of the two electrons 

are excited from ground state to the first 

excited state
[7-10]

. 

 

LOCAL SPIN DENSITY 

APPROXIMATION 

 

To properly describe superconductivity we 

clearly have to take into account the 

electronphonon interaction. In the original 

OGK formulation this interaction was 

modeled by a phonon-mediated effective 

electron-electron attraction of the form 
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To the Hamiltonian OGK added the term 
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This term is only required to break the 

gauge symmetry of the system, and can be 

taken to zero at the end of the derivation. 

Alternatively, it can be viewed as 

describing a pairing field induced by a 

nearby superconductor. 

 

The construction of SCDFT follows a 

parallel route to the derivation of spin-

DFT. In this latter theory one uses as basic 

variables the spin-densities,  , or 

equivalently, the total density 
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  (0m . The second density, m, 

can be viewed as a magnetic order 

parameter which is zero above a certain 

critical point and non-zero below, marking 

the transition from the non-magnetic to the 

magnetic phase. In a similar way, we will 

use as basic variables in SCDFT the 

“normal” density 
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and a non-local, “anomalous” density 
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As in ordinary DFT, we now introduce a 

system of non-interacting electrons (the 

Kohn-Sham system) described by the 

Hamiltonian 
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The Kohn-Sham potentials  KSKS  are 

chosen such that the pair of densities of the 

Kohn-Sham system equals the densities of 

the interacting system,  , . They are 

given by 
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The xc potentials are formally defined as 

functional derivatives of the xc free-energy 

Functional  ,xcF  
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Finally,  ,xcF  is defined through the 

expression 
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 ,xcF              (7.10) 

 

The LDA functional for superconductors 

(SCLDA) can be constructed in analogy to 

the local spin density approximation 

(LSDA), with the anomalous density 

playing the role of the spin-magnetization 

density in the LSDA. The key ingredient of 

the SCLDA is the xc energy per particle of 

the uniform gas that turns out to be a 
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function of the normal density n, and a 

functional of the anomalous 

density )( 'rr  , i.e. 

 

 )'(, rr
unif
xc

unif
xc                 (7.11) 

 

In this section we will make a brief detour 

and examine the construction of the 

LSDA. This construction will then serve as 

a template for the development of the LDA 

for superconductors. The spin local density 

approximation (LSDA) to Fxc is then 

defined by 

 

   )(3)(),( rrdrmrLSDA
xcF        

)(

)(),(

rmm

rm
unif
xc



     (7.12) 

 

where  m
unif
xc , is the xc energy per 

particle of an electron-gas of density   

and magnetization m .  

 

We now construct the LDA for 

superconductors (SCLDA) in close 

analogy to the LSDA. The homogeneous 

electron gas is exposed to an external 

pairing field  . To preserve the 

translational invariance of the uniform gas, 

  is chosen to depend on the difference 

)( 'rr  . As a consequence, the induced 

order parameter )( 'rr   is translationally 

invariant as well. It is therefore convenient 

to work in Fourier space. The Fourier 

transform of the anomalous density is 

 

 )(3)( sikssedk           (7.13)

   

where 'rrs  is the relative coordinate 

of the Cooper pair. (The Fourier transform 

of the pair potential is defined in a similar 

way.) The SCLDA is then defined as 

 

   
unif
xcdkSCLDA

xcF  )(3),(),(   

    
),(

)()(,

kw

k







          (7.14) 

 

where   represents the center of mass of 

the Cooper pair, 2/)( 'rr  . The 

function ),( kw  is the Wigner transform 

of the anomalous density of the 

inhomogeneous system, given by 

 

)
2

,
2

(3),(
ssikssedkw         (7.15) 

 

This expression trivially reduces to the 

common LDA for non-superconducting 

systems in the limit 0 . At first sight, 

other definitions of an LDA for 

superconductors with the correct non-

superconducting limit might be 

conceivable. However, it can be shown 

that (7.15) is the only correct definition. 

This follows from a semi-classical 

expansion of the total energy. The lowest-

order terms in   are identical with the 

SCLDA, leading to equation (7.15)
[7-12]

. 

 

CONCLUSION 

 

In this article we reviewed two 

extensions of ground-state DFT, the first to 

time dependent systems (TDDFT), and the 

second to the phenomenon of 

superconductivity (SCDFT). The 

construction of both theories is similar, and 

follows closely the development of 

ordinary DFT. The first step is the election 

of the densities that will be used as basic 

variables of the theory. In TDDFT one 

uses the time-dependent density, ),( tr , 

while in SCDFT the choice falls on the 

pair of densities  ),(),( 'rrr  . The 

formal foundations are then given by a 

Hohenberg-Kohn like theorem and by a 

Kohn-Sham scheme, where the 

complexities of the many-body system are 

cast into the form of xc potentials. 
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