ANALISIS SIFAT LISTRIK NANOKOMPOSIT Fe0,5-C0,5

Yunasfi

Pusat Sains dan Teknologi Bahan Maju (PSTBM) – BATAN Kawasan Puspiptek, Serpong, Tangerang -15314 E-mail: yunasfi@gmail.com

Masuk tanggal : 05-12-2014, revisi tanggal : 12-03-2015, diterima untuk diterbitkan tanggal : 19-03-2015

Intisari

ANALISIS SIFAT LISTRIK NANOKOMPOSIT Fe_{0,5}-C_{0,5}. Telah dilakukan analisis sifat listrik nanokomposit Fe_{0,5}-C_{0,5}. Penelitian ini dilakukan untuk mendapat bahan nanokomposit berbasis karbon yang memiliki sifat listrik lebih tinggi, dalam rangka pengaplikasiannya di bidang elektronik. Nanokomposit Fe_{0,5}-C_{0,5} dibuat dari campuran serbuk Fe dan serbuk grafit dengan perbandingan berat 1 : 1, kemudian dilakukan proses *milling* selama 50 jam. Hasil identifikasi pola difraksi sinar-X (*X-Ray Diffraction*, XRD) menunjukkan bahwa proses *milling* selama 50 jam terdapat puncak intensitas difraksi yang didominasi oleh fasa C(002) dan Fe(101), dan analisis data XRD menunjukkan ukuran butiran serbuk C sekitar 8 nm dan Fe sekitar 16 nm. Morfologi permukaan yang diukur dengan SEM menunjukkan ukuran serbuk Fe-C sebelum proses *milling*>10 µm, dan setelah proses *milling* selama 50 jam terdapat puncak intensiting adalah 50 nm.Hasil analisis ukuran partikel dan luas permukaan nanokomposit Fe_{0,5}-C_{0,5} masing-masing adalah 50 nm dan 705 m²/g. Dengan demikian, proses *milling* selama 50 jam terhadap campuran komposit Fe_{0,5}-C_{0,5} dapat menghasilkan nanokomposit Fe_{0,5}-C_{0,5}. Sifat listrik nanokomposit Fe_{0,5}-C_{0,5} yang diukur dengan alat LCR (*Inductance :* L, *Capacitance :* C, *and Resistance :* R) meter menunjukkan sifat listrik lebih tinggi bila dibanding dengan komposit Fe-C berukuran mikro.

Kata kunci : Nanokomposit $Fe_{0.5}$ - $C_{0.5}$, Proses milling, Sifat listrik

Abstract

ANALYSIS OF ELECTRICAL PROPERTIES OF $Fe_{0.5}-C_{0.5}$ NANOCOMPOSITE. Analysis of electrical properties of $Fe_{0.5}-C_{0.5}$ nanocomposite has been carried out. This study was conducted to obtain carbon-based composite material that has higher electrical properties in the framework of its application in electronics field. $Fe_{0.5}-C_{0.5}$ nanocomposite was prepared from a mixture of Fe powder and graphite powder with weight ratio of 1: 1. Then it milled for 50 hours. Identification of X-ray diffraction (XRD) pattern showed that during such 50-hours milling process, the intensity of the diffraction peaks was dominated by phase C (002) and Fe (101). The results of XRD data analysis showed the grain size of powder of about 25 nm and 36 nm for C and Fe, respectively. Surface morphology measured by SEM showed that the size of the Fe-C powder before milling process >10 µm, and after milled for 50 hours showed a size of about 50 nm. The analysis results of particle size and surface area of $Fe_{0.5}$ - $C_{0.5}$ nanocomposite obtained, i.e. 50 nm and 705m²/g, respectively. Thus, the process of milling for 50 hours against a mixture of $Fe_{0.5}$ - $C_{0.5}$ composite can produce $Fe_{0.5}$ - $C_{0.5}$ nanocomposite. Electrical properties of nanocomposite $Fe_{0.5}$ - $C_{0.5}$ measured by a LCR (Inductance : L, Capacitance : C, and Resistance : R) meter showed the value of conductivity of 2.56 S / cm and capacitance of 0.15 µF at frequency of 100 kHz. $Fe_{0.5}$ - $C_{0.5}$ nanocomposite shows the higher the electric properties when compared with the Fe-C micro-sized composite.

Keywords : *Fe*_{0.5}-*C*_{0.5} *nanocomposite*, *Milling process*, *Electrical property*

PENDAHULUAN

Bahan baru berbasis karbon saat ini menjadi primadona penelitian sejak Prof. Iijima pertama kali menemukan *Carbon Nano Tube* (CNT) pada tahun 1991^[1], dimana penemuan CNT ini membuka cakrawala baru tentang kemampuan teknologi nano yang sangat memotivasi dan menggerakan dunia penelitian mulai dari penelitian dasar sampai menuju ke aplikasi industri^[2].

Salah satu bentuk nano-teknologi dalam ilmu bahan adalah bahan nanokomposit merupakan bahan yang dibuat dari campuran serbuk berukuran nanopartikel. Nanokomposit akan memperlihatkan sifatsifat baru yang lebih unggul dibandingkan dengan bahan asal penyusunnya. Hal ini merupakan salah satu keunggulan utama dunia perkembangan dari nanoteknologi^[3]. Salah satu dari bahan nanokomposit berbasis karbon yang telah diteliti dan dikembangkan sejak beberapa tahun yang lalu adalah bahan nano-Fe-C. Penelitian komposit dan pengembangan bahan ini sangat menarik karena Fe-C menunjukkan nilai konduktivitas listrik dan transmisi cahaya yang rendah sehingga berpotensi untuk diaplikasikan sebagai bahan sensor, kapasitor penyimpan energi, katalis dan lain lain^[4]. Nano-komposit dan nanostruktur karbon yang mengandung nano partikel besi menunjukkan sifat kedua unsur, yaitu kelistrikan dan magnetik, dimana telah terbukti bahwa bahan komposit ini menjadi bahan yang berguna untuk aplikasi elektromagnetik di dalam bentuk lapisan tipis^[5].

Pada penelitian sebelumnya, telah dilaporkan bahwa komposit Fe-C memiliki sifat listrik dan sifat magnet yang tinggi seiring dengan semakin kecil ukuran partikel komposit Fe-C^[6] dan waktu milling yang optimal untuk menghasilkan nano-komposit Fe-C adalah selama 50 jam^[7-8]. Pada penelitian ini dilakukan analisis sifat listrik nano-komposit Fe-C yang dihasilkan dari proses milling selama 50 jam menggunakan teknik HEM (high energy milling). Berbagai metode yang telah dikembangkan untuk memproduksi nano komposit yang salah satunya adalah CVD (chemical vapor deposition) yang membutuhkan bahan baku kimia yang banyak dan biaya mahal. Dengan pengembangan teknologi, maka telah dikembangkan metode milling dengan teknik HEM, yang merupakan cara yang efektif dan murah untuk mempersiapkan nano-komposit dan struktur nano kristalin untuk menghasilkan luas permukaan bahan yang tinggi^[9].Tujuan dari penelitian ini adalah untuk mendapatkan komposit Fe_{0.5}-C_{0.5}yang memiliki ukuran partikel yang kecil (sampai skala nano) dan sifat listrik yang lebih tinggi untuk diaplikasikan sebagai piranti elektronik.

PROSEDUR PERCOBAAN

Bahan

Bahan yang digunakan dalam penelitian ini adalah serbuk grafit (karbon, C) produk *Merck* yang memiliki tingkat kemurnian 99,5% dengan ukuran partikel serbuk 10 μ m, dan serbuk besi (Fe) produk *Aldrich* yang memiliki tingkat kemurnian 99,9% dengan ukuran partikel serbuk bervariasi 10 – 50 μ m.

Alat

Peralatan untuk menyiapkan nanopartikel $Fe_{0.5}$ - $C_{0.5}$ terdiri dari : timbangan analitik, peralatan *milling* jenis HEM merek SPEX CertiPrep 8000M Mixer/Mill yang terpasang di Bidang Sains dan Bahan Maju (BSBM), PSTBM-BATAN. Untuk pembuatan pelet campuran serbuk Fe_{0.5}-C_{0.5} digunakan mesin pres tekanan sampai 3000 psi menggunakan mesin pres hidraulik, yang terdapat di BSBM, PSTBM-BATAN.Selanjutnya, identifikasi struktur fasanya digunakan alat Shimadzu Diffractometer 7000. X-Rav vang terpasang di Universitas Islam Negeri, Syarif Hidayatullah – Jakarta. Pengamatan morfologi permukaan serbuk dilakukan dengan menggunakan peralatan SEM (scanning electron microscopy) merek JEOL, analisis ukuran partikel digunakan alat PSA (particle size analyzer) Zeta Sizer Nano Series merek Malvern, dan analasis luas permukaan digunakan alat SAA (Surface Area Analyzer) Quantachrome Instrument merek Quadrasorb S.I, yang terdapat di BSBM, PSTBM-BATAN.

Karakterisasi sifat listrik campuran serbuk $Fe_{0,5}$ - $C_{0,5}$ dilakukan dengan alat ukur LCR meter di BSBM, PSTBM-BATAN.

Cara Kerja

Serbuk grafit dan serbuk besi masingmasing ditimbang dengan timbangan mikro sebanyak 10 gram, kemudian serbuk-serbuk tersebut dimasukkan ke dalam wadah vial besar berukuran 50 cc vang terbuat dari bahan baja tahan karat (stainless steel). Setelah itu, campuran serbuk tersebut diproses milling selama 50 jam pada suhu ruang. Perbandingan berat bola/berat cuplikan adalah 3 : 2,dengan diameter bola 10 mm dan berat 4,11 gram. Untuk menghindari kerusakan pada alat milling akibat peningkatan suhu motor vang terlalu tinggi, maka untuk setiap siklus *milling* selama 90 menit, proses dihentikan sekitar 30 menit untuk tujuan pendinginan motor. Dalam proses milling ini vial serta bola yang digunakan terbuat dari bahan baja tahan karat^[6].

Campuran serbuk grafit dan besi sebelum dan sesudah proses milling dilakukan pengamatan morfologi permukaan serbuk dengan perlatan SEM, analisis ukuran partikel dengan alat PSA dan analisis luas permukaan dengan alat Selanjutnya, campuran serbuk -SAA. tersebut ditimbang sebanyak 0,5 gram untuk dikompaksi dengan mesin pres hidraulik. Ketika tekanan mesin pres mencapai 3000 psi, penekanan didiamkan selama 5 menit untuk menyempurnakan proses kompaksi sehingga pelet yang terbentuk kuat dan tidak mudah pecah. Pelet yang dibuat berukuran diameter 15 mm dan ketebalan 3 mm.

Pelet Fe_{0,5}-C_{0,5} (sebelum dan sesudah *milling*) yang terbentuk proses diidentifikasi fasanya dengan metode XRD dan kemudian dilakukan analisis data XRD dengan dengan program Origin dengan pendekatan Gausian fitting analysis terhadap pelet Fe_{0.5}-C_{0.5} (sebelum dan sesudah proses milling) sehingga dapat diketahui sudut difraksi (20) dan nilai lebar setengah puncak difraksi (FWHM) yang ditunjukkan dengan nilai ß untuk masingmasing fasa karbon dan Fe. Dengan menggunakan persamaan Scherer^[10], maka dapat dihitung ukuran kristalit rata-rata berdasarkan lebar puncak difraksi :

 $\mathbf{D} = (0,9\lambda)/(\beta \cos \theta) \qquad \dots \qquad (1)$

D menyatakan ukuran kristalit rata-rata kristal, λ adalah panjang gelombang (15,404 nm), β adalah besar setengah puncak (*full width half maximum*, FWHM, dalam radian) dan θ menyatakan sudut difraksi.

Selanjutnya, campuran serbuk $Fe_{0,5}$ -C_{0,5} ini juga dilakukan analsisis ukuran partikel dengan alat PSA untuk mengetahui ukuran partikel komposit $Fe_{0,5}$ -C_{0,5} sebelum dan sesudah proses *milling* selama 50 jam, serta analisis luas permukaan dengan alat SAA untuk mengetahui permukaan partikel komposit $Fe_{0,5}$ -C_{0,5} sebelum dan sesudah proses *milling* selama 50 jam.

Pengukuran sifat listrik campuran serbuk $Fe_{0,5}$ - $C_{0,5}$ (sebelum dan sesudah proses *milling*) dengan alat ukur LCR meter dengan parameter frekuensi antara 1 kHz sampai 100 kHz, pada tegangan potensial V = 1 Volt serta pada temperatur ruang. Dari hasil pengukuran ini diperoleh data konduktansi dan kapasitansinya. Dengan menggunakan formula model W. K. Lee dkk^[11] maka nilai konduktivitas komposit $Fe_{0,5}$ - $C_{0,5}$ dapat dihitung, yaitu dengan rumus sebagai berikut :

 $\sigma = G(L/A) \qquad (2)$

dimana, σ , G, L dan A masing-masing adalah konduktivitas (Siemens/cm), konduktansi (Siemens), tebal (cm) dan luas permukaan bahan (cm²).

HASIL DAN PEMBAHASAN

Campuran serbuk grafit dan besi dengan perbandingan berat 50% : 50% dilakukan *milling* selama 50 jam dengan teknik *milling* energi tinggi pada temperatur ruang. Hasil identifikasi campuran serbuk grafit dan Fe sebelum dan sesudah proses *milling* dengan difraksi sinar-X, ditunjukkan pada Gambar 1, terlihat bahwa intensitas puncak difraksi yang muncul didominasi oleh puncak difraksi untuk atom C dan atom Fe, yaitu C(002) dan Fe(110), sesuai dengan data dari program JCPDS (*joint commitee powder diffraction standard*), PDF No. nomor 751621 untuk atom C dan 870722 untuk atom Fe. Hal ini menunjukkan bahwa proses *milling* terhadap serbuk grafit dan Fe tidak menghasilkan reaksi antara grafit dengan Fe serta tidak menunjukkan terbentuknya oksida dari kedua bahan komposit ini, sehingga dapat disimpulkan bahwa serbuk komposit Fe-C telah terbentuk.

Terlihat pada Gambar 1 bahwa intensitas puncak difraksi dari atom C dan Fe setelah proses *milling* selama 50 jam mengalami penurunan dan pelebaran bila dibanding dengan sebelum proses (0 jam *milling*). Hal ini merupakan salah satu bukti yang menunjukkan bahwa proses *milling* terhadap campuran serbuk Fe-C terjadi penghancuran serbuk^[8].

Gambar 1.Pola XRD serbuk komposit $Fe_{0,5}$ -C_{0,5} (a) sebelum dan (b) sesudah proses *milling* selama 50 jam

Hasil analisis data XRD menggunakan Origin dengan pendekatan program Gausian fitting analysis terhadap campuran serbuk Fe_{0.5}-C_{0.5} baik sebelum dan sesudah proses milling dapat diketahui sudut difraksi (20) dan nilai lebar setengah puncak difraksi (FWHM) vang ditunjukkan dengan nilai ß untuk masingmasing atom karbon dan besi. Data hasil analisis ini diperlihatkan pada Tabel 1.

Tabel 1. Hasil analisis data XRD komposit $Fe_{0,5}$ -C_{0,5}sebelum dan sesudah proses *milling* selama 50jam dengan program *Origin*

Waktu Milling	Indeks Miller, hkl	20	β (derajat)	β (radian)
0 jam	C(002)	26,570	0,2951	0,0052
	Fe(110)	44,636	0,2738	0,0048
50 jam	C(002)	26,935	1,0431	0,0182
	Fe(110)	44,715	0,3054	0,0036

Dengan menggunakan persamaan (1), maka ukuran kristalit rata-rata terhadap waktu *milling* dapat dihitung. Hasil perhitungan ini ditunjukkan pada Tabel 2.

Tabel 2. Ukuran kristalit rata-rata komposit $Fe_{0,5}$ - $C_{0,5}$ sebelum dan sesudah proses *milling* selama 50 jam.

Atom	Waktu <i>milling</i>		
	0 jam	50 jam	
С	28,912 nm	8, 184 nm	
Fe	32,775 nm	19,393 nm	

Hasil pengamatan morfologi permukaan serbuk Fe-C sebelum dan sesudah diproses milling dengan teknik HEM selama 50 jam ditunjukkan pada Gambar 2. Pengamatan morfologi permukaan ini bertujuan untuk mengetahui ukuran partikel serbuk setelah proses dihancurkan dengan milling. Diharapkan bahwa setelah proses milling selama 50 jam, serbuk Fe-C memiliki partikel berukuran nano, sehingga dapat meningkatkan sifat listrik dan magnetik bahan komposit ini. Seperti yang diperlihatkan pada Gambar 2, terlihat bahwa serbuk Fe-C telah mengalami penghancuran yang disebabkan oleh tumbukan antara serbuk Fe-C dengan bola-bola milling, dan beberapa bagian serbuk mengelompok membentuk semacam gumpalan. Bila dilihat dari hasil SEM yang diamati pada pembesaran 10.000 kali, terlihat bahwa rentang ukuran serbuk Fe-C adalah sekitar 50-100 nm. Serbuk memiliki tendensi untuk mengelompok dan gumpalan menggumpal, dimana yang terbentuk tersusun atas serbuk-serbuk berukuran lebih kecil (atau disebut dengan istilah fragmen-fragmen), dan beberapa fragmen melebur dengan fragmen lainnya dalam arah yang berlawanan.

Gambar 2. Morfologi permukaan serbuk komposit Fe-C (a) sebelum dan (b) sesudah *milling* selama 50 jam

Untuk mengetahui lebih ielas penghancuran serbuk komposit $Fe_{0.5}$ - $C_{0.5}$ yang diproses *milling* selama 50 jam dengan teknik HEM, maka dilakukan analisis ukuran partikel dengan alat PSA. Hasil analisis ini ditunjukkan pada Gambar 3, yang menunjukkan distribusi ukuran partikel campuran serbuk $Fe_{0.5}-C_{0.5}$ sebelum dan sesudah proses *milling* selama 50 jam. Campuran serbuk Fe_{0.5}-C_{0,5}sebelum milling proses memiliki ukuran yang tersebar antara5500-8500 nm (menurut spesifikasi dari pabrik adalah <10000 nm), sedangkan setelah proses milling selama 50 jam maka ukuran partikel serbuk komposit Fe_{0.5}-C_{0.5} menjadi 44-59 nm. Dengan demikian serbuk Fe_{0.5}-C_{0.5} telah mengalami penghancuran oleh proses *milling* selama 50 jam yang disebabkan oleh tumbukan antara serbuk $Fe_{0.5}$ -C_{0.5} dengan bola-bola *milling*.

Gambar 3. Distribusi ukuran partikel serbuk komposit $Fe_{0,5}$ - $C_{0,5}$ (a) sebelum dan (b) sesudah proses *milling* selama 50 jam.

Secara teori dikatakan bahwa pada proses *milling* (*mechanical alloy*) terjadi saling bertumbukan antara bola-bola milling dengan serbuk (material) sehingga serbuk tersebut dihancurkan dan pecah menjadi fragmen-fragmen, dan kemudian mengarah ke terjadinya penggabungan (cold welding/cold pooling). Mekanisme tahapan pada proses mechanical alloy secara umumnya tersusun atas 4 (empat) tahapan. Pertama adalah proses perataan vang diikuti oleh proses penggabungan, kedua adalah pembentukan serbuk dengan arah yang sama, ketiga adalah penyatuan orientasi acak, dan keempat adalah terbentuknya keadaan yang stabil (steady *state*)^[11]. Dari Tabel 3 diperlihatkan bahwa fragmen-fragmen serbuk telah terbentuk dalam arah yang berlawanan, serbuk tersebut memiliki ukuran yang halus dan lebih kecil yang berukuran nano, sehingga dari hasil ini dapat dikatakan bahwa proses milling serbuk menggunakan teknik HEM selama 50 jam pada penelitian ini telah melewati ke-4 tahapan pada proses mechanical alloy.

Hasil analisis luas permukaan serbuk komposit Fe_{0.5}-C_{0.5} hasil *milling* selama 50 jam, ditunjukkan pada Tabel 3. Terlihat bahwa serbuk komposit $Fe_{0.5}-C_{0.5}$ mengalami peningkatan luas permukaan oleh proses milling selama 50 jam. Sesuai dengan yang ditunjukkan pada Gambar 2, bahwa proses *milling* dapat menghasilkan partikel berukuran semakin kecil maka permukaan luas semakin besar. Berdasarkan hasil penelitian sebelumnya diperoleh bahwa komposit berbasis karbon menunjukkan waktu *milling* yang optimal adalah 50 jam, menunjukkan ukuran partikel paling halus dan luas permukaan yang paling besar serta sifat listrik dan magnetnya paling tinggi. Sedangkan waktu milling di atas 50 jam menunjukkan mulai terbentuk aglomerasi sehingga ukuran partikel membesar dan luas permukaan partikel mengecil^[12-13].

Tabel 3. Luas permukaan partikel serbuk komposit $Fe_{0,5}$ - $C_{0,5}$ sebelum dan sesudah proses *milling* selama 50 jam.

Waktu <i>millin</i> g	Luas permukan partikel
0 jam	217 m ² /g
50 jam	705 m ² /g

Hasil pengukuran sifat listrik terhadap komposit Fe_{0,5}-C_{0,5} memakai alat ukur diperoleh LCR meter maka nilai konduktansi dan kapasitansi listriknya. Pengukuran sifat listrik ini dilakukan terhadap perubahan parameter frekuensi yaitu dari 1 kHz - 100 kHz. Dengan menggunakan persamaan (2) maka nilai konduktivitas komposit Fe_{0.5}-C_{0.5} dapat dihitung. Hasil perhitungan konduktivitas listrik komposit Fe_{0,5}-C_{0,5} sebelum dan sesudah sesudah proses milling (mikrokomposit dan nanokomposit) diplot bentuk grafik yang dalam garis ditunjukkan pada Gambar 4. Dari Gambar 4 terlihat bahwa nilai konduktivitas dari pelet mikrokomposit dan nanokomposit $Fe_{0.5}$ - $C_{0.5}$ mengalami kenaikan seiring dengan naiknya frekuensi. Hal ini menunjukkan bahwa nilai konduktivitas tersebut merupakan fungsi dari frekuensi. Namun secara umum besar kenaikan nilai konduktivitas ini adalah tidak signifikan, yaitu di bawah 2%. Dengan demikian kenaikan ini masih dalam batas toleransi yaitu \pm 10% dalam kaitannya nanti sebagai persyaratan untuk diaplikasikan sebagai piranti elektronik.

Grafik garis yang ditunjukkan pada Gambar 4 secara jelas memperlihatkan bahwa nilai konduktivitas nonokomposit Fe_{0.5}-C_{0.5} lebih tinggi dibanding dengan mikrokomposit Fe_{0,5}-C_{0,5}, yaitu lebih tinggi sekitar 22%. Peningkatan nilai konduktivitas ini disebabkan oleh ukuran partikel $Fe_{0.5}$ - $C_{0.5}$ yang lebih kecil dan luas permukaan yang besar akibat proses milling selama 50 jam. Semakin kecil ukuran partikel komposit Fe_{0.5}-C_{0.5} maka resistivitasnya nilai menjadi turun sedangkan nilai konduktivitasnya menjadi lebih tinggi. Dengan demikian, nanokomposit $Fe_{0.5}-C_{0.5}$ jelas secara

memperlihatkan sifat listrik dari sisi nilai konduktivitas lebih tinggi dibanding dengan mikrokomposit $Fe_{0,5}$ - $C_{0,5}$.

Gambar 4. Nilai konduktivitas (a) mikro komposit dan (b) nano-komposit $Fe_{0.5}$ - $C_{0.5}$

C_{0,5} dengan variasi parameter trekuensi</sub> dari 100 Hz -100 kHz. Hasil pengukuran ini diplot dalam bentuk grafik garis yang ditunjukkan pada Gambar 5 . Dari Gambar 5 diketahui bahwa tingkat kestabilan atau perubahan nilai kapasitansi terhadap perubahan frekuensi adalah secara keseluruhan hampir sama, yaitu dari frekuensi 1 kHz sampai 100 kHz meningkat sekitar 2%. Sama halnya dengan konduktivitas nilai yang ditunjukkan pada Gambar 4. Pada Gambar 5 juga terlihat bahwa semakin tinggi frekuensi maka kapasitansi mikro komposit dan nano-komposit Fe_{0.5}-C_{0.5} meningkat.

Grafik garis yang ditunjukkan pada Gambar 4 secara jelas memperlihatkan bahwa nilai kapasitansi nano-komposit Fe_{0,5}-C_{0,5} lebih tinggi dibanding dengan mikro komposit Fe_{0.5}-C_{0.5}, yaitu sekitar lebih tinggi. Peningkatan nilai 40% kapasitansi ini disebabkan oleh ukuran partikel Fe_{0,5}-C_{0,5} yang lebih kecil dan luas permukaan semakin lebar akibat proses milling selama 50 jam. Dengan demikian, nano-komposit Fe_{0,5}-C_{0,5} secara jelas memperlihatkan sifat listrik dari sisi nilai kapasitansi lebih tinggi dibanding dengan mikro komposit Fe_{0.5}-C_{0.5}.

36 | Majalah Metalurgi, V 30.1.2015, ISSN 0126-3188/ 31-38

Gambar 5. Nilai kapasitansi (a) mikro komposit dan (b) nano-komposit $Fe_{0.5}$ - $C_{0.5}$

Dari hasil penelitian ini diketahui bahwa ukuran partikel komposit Fe_{0.5}-C_{0.5} yang lebih kecil hasil milling dengan teknik HEM dapat meningkatkan nilai konduktivitas dan kapasitansinya. Hal ini disebabkan bahwa ukuran partikel yang semakin kecil dan luas permukaan semakin besar maka daya tampung listriknya semakin banyak sehingga sifat listriknya semakin tinggi. Sifat listrik nano-komposit yang tinggi baik sekali $Fe_{0.5}-C_{0.5}$ diaplikasikan dalam piranti elektronik.

KESIMPULAN

Dari hasil penelitian yang telah dilakukan maka dapat disimpulkan bahwa nano-komposit Fe_{0.5}-C_{0.5} yang dibuat melalui proses milling selama 50 jam dapat menghasilkan komposit $Fe_{0,5}-C_{0,5}$ berukuran sekitar 50 nm dan luas m^2/g . permukaan sekitar 705 Nanokomposit Fe_{0.5}-C_{0.5} memiliki sifat listrik lebih tinggi dibanding dengan mikro komposit Fe_{0.5}-C_{0.5}. Hal ini ditunjukkan dengan nilai konduktivitas adalah 2,56 S/cm dan kapasitansi adalah 0,15 µF untuk nanokomposit $Fe_{0.5}$ -C_{0.5}

UCAPAN TERIMAKASIH

Ucapan terimakasih yang sebesarbesarnya kami sampaikan kepada Kepala Pusat Sains dan Teknologi Bahan Maju (PSTBM) dan Kepala Bidang Sains Bahan Maju (BSBM)-PSTBM, yang telah memberi kesempatan dan keparcayaan kepada kami dalam melaksanakan penelitian ini, yang merupakan sebagian dari hasil kegitan 2013 yang dibiayai dari DIPA PTBIN-BATAN. Dan tak lupa diucapkan terimakasih banyak kepada para penyelia alat XRD, SEM, PSA, SAA dan LCR meter yang telah membantu kami dalam melakukan karakterisasi sampel.

DAFTAR PUSTAKA

- [1] Scott J.H. and Majetich S.A.. 1995,,,Morphology, Structure, and Growth of Carbon Arc Nanoparticles", *Phys.Rev. B*, 52, 12564
- [2] Harris P. J. F. 2004.,,Carbon Nanotube Composites".*International Mater*. Vol. 49(1), hal. 31-43
- [3] Li Q. Li, Y., dan Zhang X. 2007.,,Structure Dependent Electrical Properties of Carbon Nanotubes Fiber".*Adv. Mater.*, 19, hal. 3358-3363.
- [4] BondarA. M. dan IordacheI. 2006.,,Carbon/Ceramic Composites Designed for Electrical Application". Journal of Optoelectronics and Advanced Materials, 8, hal. 631-637.
- [5] Kim H.M.2004.,,Elelctrical Conductivity And Electromagnetic Interference Shielding Of Multiwalled Carbon Nanotube Composites Containing Fe Cathalys". Appl. Phys. Lett. 84, hal. 589.
- [6] Yunasfi, Purwanto P. dan Mashadi. 2013.,,Sintesis dan Karakterisasi Sifat Listrik dan Magnetik Nanokomposit Fe-C". *Prosiding Seminar Nasional Fisika 2013*, Serpong, hal. 402 – 412.
- [7] Mustofa Salim dan Yunasfi.
 2009.,,Pembuatan Karbon Berstruktur Nano dengan Metode *High Energy Milling*". Jurnal Sains Materi Indonesia, 10, hal. 288 - 291.

- [8] Yunasfi. 2012.,,Karakterisasi Nano struktur Karbon dari Grafit Hasil *Milling*". *Metalurgi*, 27, hal. 279-285.
- [9] Bardhan A. 2009.,,Fabrication and Characterization of Nanomaterials". *Course E3-327*, Group 2 Report No. 2, hal. 1-3.
- [10] Wong S. C., et. al. 2006.,,Materials Processes of Graphite Nanostructure Composites Using Ball Milling", Journal of Achievements in Materials and Manufacturing Engineering, 20, hal. 159-156.
- [11] Lee W. K., Liu J. F.danNowick A.S.1991.,,Limiting Behavior Of Ac Conductivity In Ionically Conducting Crystals And Glasses: A New Universality".*Physc. Rev. Lett.*,Vol. 67(12), hal. 1559 – 1561.

- [12] Harris J.R.. 2006.,,Mathematical Modelling of Mechanical Alloying", Thesis Submitted to The University of Nottingham for The Degree of Doctor of Phylocophy. University of Nottingham
- [13] Yunasfi. 2013.,,Efek Waktu Milling terhadap Sifat Magnet Komposit Ni-C". Instrumentasi, 37, hal. 19 – 24.
- [14] Yunasfi, Mustofa Salim, dan Muflikhah. 2012.,,Penumbuhan Karbon Nanotube Dengan Teknik Milling Menggunakan Fe Sebagai Katalis Penumbuh". Jurnal Sains Materi Indonesia, 14, hal. 29-33.