PREPARASI, SINTESIS DAN KARAKTERISASI MATERIAL OKSIDA Ca₃Co₄O₉

Sigit Dwi Yudanto* dan Septian Adi Chandra Pusat Penelitian Metalurgi dan Material – LIPI Gedung 470, Kawasan PUSPIPTEK Serpong, Tangerang Selatan E-mail : *sigi008@lipi.go.id

Masuk tanggal : 16-12-2014, revisi tanggal : 10-03-2015, diterima untuk diterbitkan tanggal : 19-03-2015

Intisari

PREPARASI, SINTESIS DAN KARAKTERISASI MATERIAL OKSIDA Ca₃Co₄O₉. Penelitian dilakukan untuk membuat material oksida Ca₃Co₄O₉ dengan menggunakan proses reaksi padat. Material oksida Ca₃Co₄O₉ merupakan material termoelektrik yang mempunyai kestabilan yang baik dan sudah banyak diaplikasikan. Bahan baku sintesis Ca₃Co₄O₉ adalah serbuk CaO dan CoCO₃. Proses pembuatan diawali dengan penimbangan bahan baku, dilanjutkan dengan penggerusan, kalsinasi, kompaksi dan *sintering*. Pelet di*sinter* pada suhu 700, 750, 800, dan 850°C ditahan selama 24 jam dengan kondisi atmosfir udara. Pola difraksi sinar-x menunjukkan bahwa mayoritas puncak pantulan adalah fasa Ca₃Co₄O₉.

Kata kunci : Ca₃Co₄O₉, Reaksi padat, Penggerusan, Fasa, Difraksi

Abstract

PREPARATION, SYNTHESIS AND CHARACTERIZATION OF $Ca_3Co_4O_9$ **OXIDE MATERIAL.** The study was conducted to make $Ca_3Co_4O_9$ oxide material using solid state reaction process. $Ca_3Co_4O_9$ oxide material is a thermoelectric material that has good stability and has been widely applied. The raw materials are CaO and $CoCO_3$ powders. Synthesis process begins with the weighing of raw materials, followed by grinding, calcination, compaction and sintering. Samples sintered at temperatures 700, 750, 800, dan 850 °C for 24 hours in air atmospheric conditions. X-ray diffraction pattern shows that the majority of the reflection is $Ca_3Co_4O_9$ phase.

Keywords : Ca₃Co₄O₉, Solid state reaction, Milling, Phase, Diffraction

PENDAHULUAN

Material termoelektrik adalah material yang dapat mengubah energi panas menjadi energi listrik secara langsung. Material termoelektrik bekerja berdasarkan gejala atau efek Seebeck. Efek Seebeck ditemukan Thomas Johann Seebeck yang oleh berkebangsaan Jerman pada tahun 1821^[1]. Seebeck^[1]. Johann Menurut Thomas timbulnya tegangan antara dua ujung batang logam terjadi karena adanya perbedaan suhu (ΔT) diantara kedua logam tersebut. Penerapan efek Seebeck ini secara umum pada termokopel. Gambar 1 memperlihatkan efek Seebeck dan contoh prinsip penerapannya pada sel termoelektrik. Pada penerapannya sebagai material termoelektrik, dua buah material disusun secara berpasangan. Pasangan material ini biasa disebut tipe-p dan tipe-n. Pasangan

material ini diletakkan sedemikian rupa sehingga kedua permukaan pasangan mendapatkan suhu yang berbeda.

Gambar 1. Efek Seebeck^[1]

Material Ca₃Co₄O₉ merupakan material oksida termoelektrik yang mempunyai kestabilan tinggi dan telah banyak diaplikasikan^[2-9]. Menurut Weidenkaff, *et* $al^{[6]}$, nilai *figure of merit* (ZT) material Ca₃Co₄O₉ lebih tinggi daripada material Ca₃Co₂O₆ yaitu \approx 1,2 pada suhu 727°C, sedangkan material Ca₃Co₂O₆ \approx 0,2 pada suhu yang sama. Nilai ZT beberapa material oksida ditunjukkan pada Gambar 2.

Gambar 2. Nilai ZT beberapa material termoelektrik^[6]

Polikristal Ca₃Co₄O₉ mempunyai struktur yang berbentuk lapisan/*layer*^[5,7-8]. Miyazaki, *et al*^[7] mengemukakan bahwa struktur kristal senyawa [Ca₂CoO₃]_{0,62}CoO₂ adalah bentuk dasar dari kristal Ca₃Co₄O₉ atau Ca₉Co₁₂O₂₈. Struktur polikristal [Ca₂CoO₃]_{0,62}CoO₂ tersusun dari dua buah subsistem struktur kristal, yaitu sistem CoO₂ dan Ca₂CoO₃ seperti yang terlihat pada Gambar 3.

Gambar 3. Model struktur kristal Ca₃Co₄O₉^[7-8]

Berdasarkan deskripsi mengenai material termoelektrik di atas, maka dilakukan percobaan untuk membuat material oksida Ca₃Co₄O₉ yang dapat dimanfaatkan sebagai material termoelektrik. Material termoelektrik diharapkan dapat meningkatkan efisiensi penggunaan energi. Salah metode sintesis material satu

termoelektrik adalah metode reaksi padatan [4-5] reaction) state Percobaan (solid pembuatan material diawali dengan analisis termal bahan baku untuk mengetahui perubahan perilakunya terhadap suhu, terutama perubahan fasa. Dengan mengetahui perubahan fasa ini. maka pembentukan material dapat diprediksi berdasarkan diagram fasa sistem Ca-Co-O^{[9-} 10]

PROSEDUR PERCOBAAN

Tahapan percobaan pembuatan material $Ca_3Co_4O_9$ meliputi penimbangan bahan baku, pencampuran, penggerusan, kalsinasi, kompaksi dan sintering. Penggerusan bahan baku yang sudah dicampur dilakukan selama 24 jam dengan menggunakan planetary ball mill. Setelah digerus, campuran dikalsinasi dengan suhu 400°C. Hasil kalsinasi digerus kembali dan dibentuk pelet dengan tekanan 30 MPa. Pelet disinter pada suhu 700, 750, 800, dan 850°C yang ditahan selama 24 jam. Sintering dilakukan pada lingkungan atmosfir udara bebas dan dibiarkan dingin di dalam tungku hingga mencapai suhu kamar.

Analisis termal bahan baku serbuk CaO dan CoCO3 menggunakan DTA/TGA (differential thermo analysis/thermo gravimetry analysis). Karakterisasi sampel hasil sintesis menggunakan difraksi sinar-X dengan radiasi $Cu \ K\alpha \ (\lambda = 1,5418\text{\AA}).$ Pengukuran dilakukan pada rentang sudut 20 5 – 60°. Mikrostruktur diamati dengan menggunakan citra mikroskop elektron. Sedangkan kandungan unsur dalam sampel dianalisis menggunakan EDS (energy dispersive spectroscopy).

HASIL DAN PEMBAHASAN

Analisis Termal Bahan Baku

Pada percobaan pembuatan material Ca₃Co₄O₉, bahan baku yang digunakan adalah serbuk CaO dan CoCO₃. Sebelum melakukan sintesis, perilaku bahan baku terhadap panas diamati dengan menggunakan DTA/TGA. Kurva hasil

DTA/TGA serbuk CaO dan CoCO₃ ditunjukkan pada Gambar 4(a) dan 4(b).

Gambar 4. Kurva DTA/TGA (a) CaO dan (b) CoCO₃

Pada kurva TGA serbuk CaO (Gambar 4(a)) terjadi dua kali kehilangan massa yang signifikan, yaitu pada rentang suhu 390-480°C dan 600-780°C. Kehilangan massa diiringi dengan reaksi penyerapan panas atau endotermal (kurva DTA). Menurut I. Čakajdovä^[12], anomali yang terjadi pada pemanasan CaO tidak disebabkan oleh transformasi fasa melainkan terjadi perubahan parameter kisi sistem kristal CaO. Perubahan parameter kisi kristal CaO terjadi karena adanya ekspansi termal^[10]. Hal ini dibuktikan oleh I. Čakajdovä^[12] melalui difraksi sinar-X.

Pada kurva DTA serbuk *cobalt carbonate* (Gambar 4(b)), anomali terjadi pada rentang suhu 250-370°C. Pada rentang suhu ini terdapat puncak endotermal yang diikuti dengan kehilangan massa yang besar (kurva TGA). Menurut Chong-Hu $Wu^{[13]}$, puncak endotermal ini adalah reaksi dekomposisi CoCO₃ menjadi Co₃O₄ yang disertai dengan

pelepasan gas CO_2 . Reaksi dekomposisi ditunjukkan pada persamaan $1^{[13]}$.

$$3C_{0}CO_{3(s)} + 1/2O_{2(g)} \rightarrow Co_{3}O_{4(s)} + 3CO_{2(g)}$$

.....(1)

Dari hasil analisis termal bahan CaO dan $CoCO_3$ dijadikan pertimbangan dalam proses kalsinasi untuk sintesis material $Ca_3Co_4O_9$. Proses kalsinasi dengan suhu 400°C bertujuan untuk menghilangkan karbon dalam campuran, terutama karbonat pada senyawa CoCO₃.

Analisis Difraksi Sinar-X

Hasil difraksi sinar-x Ca₃Co₄O₉ yang 800. 850°C disinter 700. 750. dan ditunjukkan pada Gambar 5. Pola pantulan difraksi sinar-x menunjukkan bahwa mayoritas puncak difraksi adalah fasa Ca₃Co₄O₉ yang sesuai dengan international centre for diffraction data (ICDD) PDF-2 No. 23-0110^[4]. Berdasarkan hasil difraksi tersebut, pembentukan fasa Ca₃Co₄O₉ terjadi seiring dengan kenaikan suhu sintering. Hal terlihat dengan semakin tingginya ini intensitas puncak pantulan difraksi sinar-x pada fasa Ca₃Co₄O₉. Pada sudut $2\theta = 8^{\circ}$ terlihat adanya peningkatan intensitas $Ca_3Co_4O_9$. Pada puncak fasa suhu pemanasan 700°C, puncak pada sudut belum terlihat dengan tersebut jelas. Intensitas puncak terlihat jelas pada suhu pemanasan 800°C, dan sebaliknya pada suhu pemanasan 850°C, intensitas puncak pada sudut $2\theta = 8^{\circ}$ mengalami penurunan.

Y. C. Liou, *et al*^[4] melakukan percobaan sintesis material Ca₃Co₄O₉ menggunakan metode reaksi padatan dengan suhu sintering pada rentang 850 – 900°C. Bahan baku yang digunakan Liou adalah CaCO₃ (99,9%), CoCO₃-xH₂O (99,9%). Hasil percobaan Liou, et al menghasilkan fasa Ca₃Co₄O₉ dengan fasa pengotor Co₃O₄, CaCo₂O₄, and Percobaan $Ca_2Co_2O_5$. vang dilakukan menggunakan metode yang sama dengan Liou tetapi dilakukan modifikasi pada proses dan bahan baku yang digunakan. Pada percobaan ditambahkan proses pemanasan (kalsinasi) sebelum disinter dan menggunakan bahan baku CaO (99%) dan CoCO₃ (kemurnian 46-48% sebagai Co). Meskipun tidak menghasilkan fasa tunggal Ca₃Co₄O₉, tetapi fasa pengotornya hanya fasa Ca₃Co₂O₆.

Gambar 5. Pola Difraksi Sinar-X Sampel Ca₃Co₄O₉ hasil *sintering* dengan variasi suhu

Pada sudut $2\theta = 20-25^{\circ}$ terdapat puncak yang menandakan adanya fasa $Ca_3Co_2O_6$, sesuai dengan ICDD PDF-2 No. #089-0629^[14-15]. Kemungkinan penyebab tidak terbentuknya fasa tunggal Ca₃Co₄O₉ adalah tepatnya stoikiometri tidak antarfasa penyusun CaO dan Co₃O₄ pada saat reaksi terjadi. Berdasarkan diagram fasa sistem Ca-Co-O^[9-10], jika perbandingan % berat fraksi mol fasa penyusun tidak tepat maka akan terbentuk dua fasa gabungan, yaitu fasa $Ca_3Co_4O_9 + Ca_3Co_2O_6$ dan $Ca_3Co_4O_9 +$ $Co_3O_4^{[9]}$ pada rentang suhu 800-926°C.

Dari pola difraksi sinar-X, dapat diperkirakan ukuran kristal fasa $Ca_3Co_4O_9$ yang terbentuk dengan menggunakan rumus *Scherrer*^[16-17] yang ditunjukkan pada persamaan 2.

dimana B adalah *full width at half maximum* (FWHM) puncak difraksi (rad), K adalah konstanta *Scherrer* (K = 0,9), L adalah ukuran kristal (nm) dan θ adalah sudut difraksi sinar-X. Untuk menentukan nilai FWHM atau lebar puncak difraksi pada

setengah ketinggian antara latar belakang dan puncak maksimum^[17] menggunakan perangkat lunak *Bella v2.21*. Perkiraan ukuran kristal ditunjukkan pada Tabel 1.

Tabel 1. Ukuran kristal $Ca_3Co_4O_9$ berdasarkan puncak ICDD PDF-2 No. 23-0110^[4]

No.	Sudut 20 Puncak	Bidang kristal (hkl)	B (deg)	L (ukuran kristal) (nm)
1.	8,28	001	0,1016	78,4972
2.	16,56	002	0,1268	63,3614
3.	24,93	003	0,1324	61,4986
4.	33,45	004	0,1872	44,3465
5.	37,37	$\overline{2} 0 0$	0,1394	60,2068
6.	43,55	005	0,1612	53,1101
7.	48,76	203	0,2138	40,8272

Dari perhitungan ukuran kristal dengan menggunakan rumus *Scherrer* diperoleh perkiraan ukuran kristal pada rentang 40-79 nm.

Analisis Struktur Mikro dan EDS

Mikrostruktur Ca₃Co₄O₉ yang disinter pada suhu 800 °C ditunjukkan pada Gambar 6(a). Mikrostruktur sampel terlihat masih berpori (porous). Kemungkinan penyebab masih porosnya mikrostruktur adalah masih terdapatnya reaksi pelepasan gas CO₂. Butiran struktur mempunyai bentuk yang tidak homogen. Ukuran butir terlihat pada rentang 0.3 1.5 μm. Sedangkan mikrostruktur Ca₃Co₂O₆ berbentuk bulat memaniang^[18]. Mikrostruktur $Ca_3Co_2O_6$ terlihat mempunyai ukuran yang kecil.

Sedangkan Gambar 6(b) memperlihatkan analisis unsur pada sampel $Ca_3Co_4O_9$ menggunakan EDS. Berdasarkan persentase massa tiap-tiap unsur, ternyata tidak menunjukkan perbandingan unsur dari material $Ca_3Co_4O_9$. Hal ini disebabkan karena berdasarkan hasil difraksi sinar-X terdapat 2 fasa yang terbentuk.

(a)

(b)

Gambar 6. (a). Citra Mikroskop Elektron sampel $Ca_3Co_4O_9$ yang di*sinter* 800°C, (b). Hasil *EDS* sampel $Ca_3Co_4O_9$ yang di*sinter* 800°C

KESIMPULAN

Sintesis material Ca₃Co₄O₉ menggunakan metode reaksi padatan tidak menghasilkan tunggal fasa $Ca_3Co_4O_9$. Berdasarkan karakterisasi dengan difraksi sinar-x terhadap sampel yang disinter pada suhu 800°C dengan kondisi atmosfir udara bebas, fasa yang terbentuk adalah fasa Ca₃Co₄O₉ $Ca_3Co_2O_6$. Terbentuk dan $Ca_3Co_4O_9$ nanokristalin dan nanopartikel berdasarkan hasil perhitungan ukuran kristal dan pengamatan menggunakan citra mikroskop elektron. Mikrostruktur Ca₃Co₂O₆ berbentuk bulat memanjang.

UCAPAN TERIMA KASIH

Ucapan terima kasih penulis berikan kepada Bapak Suparno yang telah membantu proses penggerusan (*milling*) dan Bapak M. Hikam atas izin untuk pemakaian perangkat lunak *Bella v2.21*, serta semua pihak yang secara langsung atau tidak langsung membantu penelitian ini.

DAFTAR PUSTAKA

- D. M. Rowe. 1995. Handbook of Thermoelectrics. CRC Press LLC, United States of America.
- [2] Jeffrey W. Fergus. 2012. "Review: Oxide materials for high temperature thermoelectric energy conversion". *Journal of the European Ceramic Society* 32 Hal. 525–540.
- [3] Urata, Saori. 2007.,,Power Generation of a p-Type Ca₃Co₄O₉/n-Type CaMnO₃ Module". *Int. J. Appl. Ceram. Technol.*, 4 [6] Hal. 535–540.
- [4] Liou, Y. C., W. C. Tsai, W. Y. Lin and U. R. Lee.2008.,,Synthesis of Ca₃Co₄O₉ and CuAlO₂ Ceramics of the Thermoelectric Application Using A Reaction-Sintering Process". J. Aust. Ceram. Soc. 44 [1] Hal. 17-22.
- [5] Melanie Ihns. 2013. ...Structural engineering of $Ca_3Co_4O_9$ thermoelectric thin films". Master Thesis. Faculty of Science and Technology Inorganic **Materials** Science - University of Twente.
- [6] Weidenkaff, A., M. H. Aguirre, L. Bocher, M. Trottmann, P. Tomes, and R. Robert. 2010.,,Development of Perovskite-type Cobaltates and Manganates for Thermoelectric Oxide Modules". *Journal of the Korean Ceramic Society* Vol. 47, No. 1, Hal. 47-53.
- [7] Miyazaki, Y., Mitsuko Onoda, Takeo Oku, Masae Kikuchi, Yoshinobu Ishii, Yasuhiro Ono, Yukio Morii and Tsuyoshi Kajitani. 2002.,,Modulated Structure of the Thermoelectric Compound [Ca₂CoO₃]_{0.62}CoO₂".

Journal of the Physical Society of Japan Vol. 71, No. 2, Hal. 491–497.

- [8] Paengson, S., Tosawat Seetawan, Pennapa Muthitamongkol and Chanchana Thanachayanont. 2013.,,Characterization P-Ca₃Co₄O₉ and N-CaMnO₃". Advanced Materials Research Vol. 802 Hal. 209-212.
- [9] Tran, Hoa., Tejas Mehta, Matthias Zeller, and Richard H. Jarman. 2013.,,Synthesis and characterization of mixed phases in the Ca–Co–O system using the Pechini method". *Materials Research Bulletin* 48 Hal. 2450 – 2456.
- [10] Sedmidubsky', D., V. Jake's, O. Jankovsky', J. Leitner, Z. Sofer, and J. Hejtma'nek. 2012.,,Phase Equilibria in Ca–Co–O System". *Journal of Solid State Chemistry* 194 Hal. 199 205.
- [11] Kenfaui, Driss., Guillaume Bonnefont, Daniel Chateigner, Gilbert Fantozzi, Moussa Gomina, and Jacques Guillaume Noudem. 2010.,,Ca₃Co₄O₉ ceramics consolidated by SPS process: Optimisation of mechanical and thermoelectric properties". *Materials Research Bulletin* 45 Hal. 1240–1249.
- [12] Čakajdovä, I. 1972.,,To the Problem of the Formation of Modifications of Calcium Oxide". *Chem. zvesti* 26,Hal. 41-43.
- [13] Wu, Chong-Hu. 2012.,,Low Energy-Consumption Industrial Production of Ultra-Fine Spherical Cobalt Powders". *InTech open source publications*.

- [14] Yudanto, Sigit Dwi. 2014.,,Pengaruh Suhu Sintering Terhadap Pembentukan Keramik Ca₃Co₄O₉ Melalui Proses Reaksi Padatan". *Prosiding Seminar Material Metalurgi 2014*, Pusat Penelitian Metalurgi dan Material-LIPI, hal. 293-297.
- [15] Yudanto, Sigit Dwi dan Septian Adi Chandra. 2013.,,Sintesis dan Analisis Struktur Kristal Cu doping Calcium Cobalt Oxide (C_{a3}C_{o2O6}) dari hasil X-Ray Diffraction". Prosiding Seminar Material Metalurgi, Pusat Penelitian Metalurgi -LIPI, hal. 353 – 357.
- [16] Monshi, Ahmad., Mohammad Reza Foroughi, Mohammad Reza Monshi. 2012.,,Modified Scherrer Equation to Estimate More Accurately Nano-Crystallite Size Using XRD". World Journal of Nano Science and Engineering Vol. 2 Hal. 154-160.
- [17] Speakman, Scott A. 2014.,,Estimating Crystallite Size Using XRD". MIT Center for Materials Science and Engineering.
- [18] Mukherjee, K. and E.V. Sampath kumaran. 2010. "Synthesis of fine particles of a geometrically frustrated spin-chain system $Ca_3Co_2O_6$ through a pyrophoric route and its magnetic behavior".

(<u>http://arxiv.org/ftp/arxiv/papers/1001/</u> <u>1001.4953.pdf</u>, diakses 10 September 2014)